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CT Filtration Aliasing Artifacts 

Carl R .  Crawford 

Abstract-In a continuous implementation of filtered backprojection 
for computerized tomography (CT), projections are filtered prior to 
hackprojection. The filter has a frequency response that is given by the 
absolute value of the frequency component. When backprojection is 
implemented in a discrete environment, the filtration operation can be 
derived by sampling the filter either in the Fourier or spatial domains. 
It is shown that the Fourier domain version leads to a dc shift and some 
low frequency shading in the resulting reconstructions because of 
aliasing of the filter. The primary purpose of this paper is to show that 
the aliasing occurs because the inverse Fourier transform of a band- 
limited version of the continuous filter has infinite spatial extent. A 
method is also proposed to reduce the aliasing artifacts. 

I. INTRODUCTION 

The filtered backprojection algorithm allows for the reconstruc- 
tion of a two-dimensional function from a set of one-dimensional 
projections [l]. As the name of the algorithm implies, the projec- 
tions are filtered prior to backprojection. In a continuous imple- 
mentation of filtered backprojection, the frequency response of the 
filter is given by the absolute value of the frequency component. 
In a discrete implementation of filtered backprojection, the filtra- 
tion step can be derived by sampling in either the Fourier or spatial 
domains [2]-[4]. The reconstructions that result from these two 
different filtration methods are virtually identical. However, the 
method based on Fourier sampling generates a slight object-depen- 
dent dc shift and some low-frequency shading artifacts in the re- 
sulting reconstructions. In applications where the resulting images 
are used for quantitative analysis, the shift and the shading will be 
problematic. The differences in the reconstructions obtained with 
the two filtration methods have been pointed out in a number of 
papers [2]-[9]. The primary purpose of this paper is to show that 
the errors in the Fourier filtration method are due to aliasing. The 
aliasing occurs because the inverse Fourier transform of a band- 
limited version of the continuous filter has infinite spatial extent. 
The underlying mathematics will be reviewed in Section 11. In Sec- 
tion 111, it will be shown that the dc shift and the shading are due 
to aliasing. Also in Section 111, a method will be shown to reduce 
the effects of the aliasing. 

11. MATHEMATICAL BACKGROUND 

In this section, the often used approximations needed to imple- 
ment the filtered backprojection algorithm in a discrete environ- 
ment are described. The discussion here focuses on reconstructions 
from the parallel projection data. The material that is presented is 
a summary of standard material that is found in the literature [2]- 
[4]. It is presented here in order to emphasize the origins of the 
two filtration operations and to develop notation that will be re- 
quired in the next section. 

Consider a two-dimensional function g ( x ,  y) .  A parallel projec- 
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tion at angle 6, P ( 0 ,  t ) ,  is given by 

P ( 0 ,  t )  = iym im g ( x ,  y)  6 ( x  cos 0 + y sin 0 - t )  dx dy. 
-m 
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If the projections are known for all 0 between zero and T ,  the orig- 
inal function can be exactly reconstructed by backprojecting fil- 
tered versions of the projections [I]. The filtered projections are 
given by 

e(@, t )  = im -m S(0, f ) I f  I df 

where S( 0, f )  is the Fourier transform of P( 0, t )  given by 

S ( 0 , f )  = jm  P ( 0 ,  t )  e-J2"*dt ( 3 )  
-cm 

and the reconstruction filter is 1 f 1 .  The operation of backprojec- 
tion for reconstructing g ( x ,  y )  is described by 

g ( x ,  y )  = Q ( e ,  x cos e + y sin e )  de. (4) 

Equation (4) presupposes that an infinite number of projections are 
known for 8 from zero to T .  Equations (2) and (3) imply that the 
projections are known at infinitesimal sampling intervals. In order 
to reduce the amount of information required, a number of approx- 
imations and simplifications are made. 

Instead of trying to obtain the tomograph for the entire xy-plane, 
only a disk of radius T is reconstructed. Distortions occur if the 
object is not zero outside of this region. Most applications have the 
object to be scanned immersed in air or water. The projection data 
is normalized to zero for ray paths that include only the air or water 
[lo]. 

Since the object is zero outside the disk, the projections P( 8, t )  
are also zero for It1 > T. To obtain the exact image an infinite 
number of samples are needed over the interval ( 1 1  < T. If the 
projections are approximately band-limited S (  8, f )  = 0 for I f I 
> B and if more than 4BT samples are used practically all the 
significant information about the projections can be recovered be- 
cause of the sampling theorem. Let N be the number of samples. 
The sampled projection P, (8, i ) can be found from the projection 
data as follows: 

( 5 )  
2 T  

, N - 1 ,  7 = -. N i = 0 ,  1 ,  

When the projections are assumed to be of finite bandwidth B 
and finite order (which means that the entire band-limited signal 
may be represented by a finite number of samples taken at the 
Nyquist rate), the samples Q,( 0, i ) of the filtered projections Q (  8, 
t )  can be obtained from the sampled projections by replacing the 
Fourier integrals in (2) and (3) with discrete Fourier transforms 
( D m  

M / 2 - I  

Q,(O, i )  = k =  gMM/2 s,(e, k)R(k)ej2"iklM (6) 
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and 

where M is the length of the inverse DFT, it has been assumed that 
M is even, and R ( k )  is defined as follows: 

The method of obtaining the filtered projections using (6) will 
be denoted the Fourier method. The method can be implemented 
as indicated with (6) and (7). Alternatively, the filtration can be 
implemented using numerical convolution of the sampled projec- 
tions and the inverse DFT of R ( k ) .  The discrete convolution may 
be implemented directly on a general purpose computer. However, 
it is usually much faster to implement (6) and (7) in the frequency 
domain using fast Fourier transforms (FFT). For the frequency do- 
main implementation it is only possible to perform periodic or cir- 
cular convolutions and the convolution required is aperiodic. To 
eliminate the interference artifacts inherent with periodic convo- 
lution the projection data have to be padded with sufficient number 
of zeros. It can be shown that if P, is padded with zeros so that it 
is at least M = ( 2  N - 1 ) elements long, interperiod interference 
over the N samples of Q, is avoided [ 111.  

An alternative implementation of the filtration step is obtained 
by only invoking the assumption of finite bandwidth. Since the pro- 
jections are bandlimited it does not matter what the filter in (2) is 
for 1 f I > B. Letting it be zero results in 

I f \ >  If1 
0, elsewhere 

H(f) = (9)  

The function corresponds to the following impulse response in the 
spatial domain 

B sin 23rBt ( sinT;Bt)2 
h ( t )  = ~ - - 

*t 

If the projections and h ( t )  are sampled at the Nyquist frequency it 
follows that r = 1 /( 2 B ). Then it can be shown using (2) that the 
samples of the filtered projections are given by 

N -  I 

Qs(O, i )  = T P J 0 ,  i - I ) h 5 ( I ) ,  
I =  - ( N -  I )  

i = 0, . . .  , N - 1 (11) 

where (1 1) follows from the fact that each sampled projection is 
zero outside the range (0, N - 1 ) for its index. The sampled func- 
tion h, ( I  ) is obtained by substituting t = IT in (10) 

B 2 ,  1 = 0 

1 even. (12 )  (,-* l2S2’  l o d d  

Equation (1 1) implies that in order to know Q, (0, t ) exactly at the 
sampling points the length of the sequence h, ( 1  ) used should be 
from I = - ( N  - 1)  to I = ( N  - 1 ). 

The method of obtaining the filtered projections using (1 1) will 
be denoted the Spatial method. The discrete convolution in (1 1) 
may be implemented directly on a general purpose computer or it 
can be implemented with FFT algorithms. The use of speciallyde- 
signed hardware makes the direct implementation of (1 1 )  as fast or 
faster than the frequency domain implementation. 

The continuous filtered projections, in either of the two methods, 
can be recovered exactly by low-pass filtering. In practice this is 
too computationally expensive and linear interpolation is used. 

The next simplification is the replacement of the integral in (4) 

with a summation. This is needed because in any real system there 
can only be a finite number of projections. If there are K equally 
spaced projections, using (4), the reconstructed image can be ap- 
proximated with 

where Q’ is a linearly interpolated approximation to Q. Equation 
(13) is valid for any point ( x ,  y ) ,  but only a finite number of picture 
points can be reconstructed in a computer implementation. Since 
the picture is zero outside of a disk of radius T only a square of 
dimensions 2T by 2T will be considered. This will be sampled at 
w2 points. 

111. FILTRATION ALIASING ARTIFACTS 

Fig. l(a) shows the reconstruction along a diameter of a disk of 
radius 7.5 cm. The Spatial method was used to obtain the filtered 
projections. The reconstruction along a diameter will be denoted a 
center line profile. A point source and a point detector were sim- 
ulated. The disk has density 1000 and the background has a value 
of zero. The parameters of the reconstruction were N = K = 64, 
M = 128, and W = 128. The only degradation noticeable in this 
profile is the smearing of the edges and some ringing. The degra- 
dation occurs because the projections of a disk have an infinite 
bandwidth and the projections are sampled, thus a low-pass filter 
is introduced. Fig. l(b) is the center line profile when the Fourier 
method is used to obtain the filtered projections. The only differ- 
ence between these two figures appears to be a dc shift in all the 
values and a slight upward shading. The shading is indicated by 
the curvature at the center of the profile. 

The source of the differences between the Fourier and Spatial 
methods can be seen by comparing both methods in the Fourier 
domain. Fig. 2 shows the difference between the DFT of the Spa- 
tial method’s filter h, and the filter in the Fourier method, R ( k ) .  
Only the first few terms are shown because the difference function 
tends to zero. At dc it is seen that the Spatial method’s filter has a 
positive value because the Fourier method’s filter is zero. This is 
the source of the dc shift in the two reconstructions shown in Fig. 
1 .  The differences at the next few frequency components lead to 
the shading. The rest of this section deals with the origin of the 
differences shown in Fig. 2 and methods to correct for them. 

The filter used in the Fourier method R ( k )  is a sampled version 
of the filter H( f )  given in (9). The impulse response correspond- 
ing to H( f ), given in (IO), has an infinite spatial extent. Thus, 
just as aliasing takes place when a nonband-limited signal is sam- 
pled in the space domain causing aliasing in the frequency domain, 
aliasing will occur in the space domain because of sampling in the 
frequency domain. The function that corresponds to R ( k )  in the 
space domain can be obtained by taking the inverse DFT of (8) 
which results in 

r ( i )  = h , ( i )  + a,(i) (14) 

where 
. 2  

The function r (  i ) is defined for all values of the index i and is 
periodic with period M. According to (1 I ) ,  only the values of r ( i  ) 
for i in the range [ - ( N  - 1 ), N - 1 ] are required to perform the 
filtration. 

The filtered projection in the Fourier method can be obtained by 
convolving Ps(O,  i )  with r ( i )  
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look at the dc term in a, ( i  ). The dc term D is given by 
M / Z - I  M / 2 -  I 
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Fig. 1 .  Center line profiles of the reconstructions of a disk of radius 7.5 
cm. Reconstructions were made with (a) the Spatial method and (b) with 
the Fourier method. The dashed line is the theoretical center line profile. 
The scale has been expanded in order to emphasize artifacts. Values out- 
side of the scale were set to the limit values of the scale. 

0- 
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F R E Q U E N C Y  S R M P L E ,  K 
Fig. 2. Difference between the DFT of the Spatial method's filter h, and 

the filter used in the Fourier method, R ( k ) .  

where the ( * )  indicates convolution. The first term of (16) reduces 
to the filtered projection obtained using the Spatial method. The 
second term must cause the dc shift and the shading. From (15), it 
is seen that the sequence a, is negative or zero. The projections of 
a disk are positive definite. The second convolution in (16) repre- 
sents the difference between the filtered projections obtained by 
Fourier and Spatial methods. For the case of a disk, the convolu- 
tion between a negative and positive sequence is a negative se- 
quence. Adding negative terms in the filtered projection causes at 
least the negative dc bias in the reconstruction. The bias is object- 
dependent because the error occurs in the filtration step during fil- 
tered backprojection. Another way to verify this observation is to 

M/2-I 

i=-M/2 = -7 c h,(i) 

where the second part of the equation follows from (14) and the 
third part follows from (8). Equation (17) can be evaluated with 
(12) yielding 

where the following equation was utilized in the simplification [12, 
eq. (5.11.33)] 

1 1 [1r2 - 2$'(: + n)] (19) 
n - l  z-=- 
'=0(2k + 1 $  8 

$ ( x )  is the Psi (or Digamma) function defined by 

The prime as a superscript indicates a derivative. An asymptotic 
expansion for $ ' ( x ) ,  whenx is large, is given by [13, eq. (6.4.12)] 

1 1 1  $ ' ( x )  = - + - + - - . . . 
2x3 6x3 

Therefore, (18) can be approximated with 

A modified filter for the Fourier method can be obtained when 
the value obtained from (22) is subtracted from R ( 0 ) .  The recon- 
struction that results with the modified filter is shown in Fig. 3(a). 
It is seen that most of the dc shift has been removed but there still 
is soni? shading present. It will now be shown that the remainder 
of the dc shift and the shading can be eliminated by replacing the 
first few values of R ( k )  with the DFT of h,. 

Let H, ( k )  be the DFT of the filter for the Spatial method 

(23) 
If (12) is substituted in (23), and (19) and (21) are used, the fol- 
lowing is obtained: 

where 

(M/4) - I cos2ak(2i + 1)/M 

i = O  (2i + 1)2 
SM(k) = (M/4) -  1 (25) 

C (2i + I)-' 
i = O  

A closed-form solution of (25) could not be determined. Table I 
shows the values of S M ( k )  for typical values of M and k that were 
obtained by direct evaluation of (25). Fig. 3(b) shows the center 
line profile of the disk after the values of R ( k ) ,  for k = 1, 2, are 
replaced with the values obtained with (24) (after multiplication 
with 7 ) .  Comparing this reconstruction to Fig. l(a) shows that the 
Fourier method with the dc and two lowest frequency terms cor- 
rected will yield approximately the same results as obtained with 
the Spatial method. 
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Fig. 3. Center line profiles of the reconstruction of the disk with filtration 
done with modified versions of the Fourier method: (a) is with compensa- 
tion for dc errors and (b) is with correction for dc and the first two fre- 
quency components. 

TABLE I 
TYPICAL VALUES OF THE FUNCTION SM( k )  
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ods were based on derivations made in the spatial and Fourier 
domains and therefore they are denoted the Spatial and Fourier 
methods, respectively. Both methods can be applied in either the 
spatial or Fourier domains. The Fourier method of filtration pro- 
duces images with dc shifts and low-frequency shading. The Spa- 
tial method of filtration does not generate similar artifacts. It has 
been shown that the artifacts result because of aliasing artifacts that 
arise when a spatial waveform with infinite extent is sampled in the 
Fourier domain. It was also shown that it is possible to correct the 
artifacts generated with the Fourier method by replacing the dc  and 
the first two frequency components with the corresponding terms 
from the discrete Fourier transforms of the filter used in the Spatial 
method. 

M k = l  k = 2  k = 3  

32 0.9007 1034 0.76843792 0.64 170682 
64 0.95 101577 0.88569993 0.82317317 

128 0.97566682 0.9432 1388 0.9 12 15277 
256 0.98787266 0.97 I69709 0.9562 1610 
512 0.99394625 0.98587108 0.97814298 

1024 0.99697590 0.99294168 0.98908007 
2048 0.998488 13 0.996471 11 0.99454314 

The Fourier domain filter is also known as the Ramachandran- 
Lakshminarayanan kernel [ 141. In order to improve the signal-to- 
noise ratio in reconstructions, the projections can be low-pass fil- 
tered [15]. Usually, the filtration required by the reconstruction 
algorithm and the low-pass filtering is performed in one step by 
filtering the projections with the convolution of the low-pass filter 
and the reconstruction kernel. If the low-pass filter is sampled in 
the Fourier domain, then aliasing will occur because the filter has 
infinite spatial extent. The Shepp-Logan kernel is a commonly used 
combination of the reconstruction kernel and a low-pass filter [ 161. 
Because the Shepp-Logan kernel is derived from a sampled version 
of the inverse continuous Fourier transform, aliasing will not occur 
for the low-pass component. 

The effects of aliasing can be reduced by zero-padding the pro- 
jections before taking the initial DFT when the projections are fil- 
tered in the Fourier domain. The reduction in aliasing artifacts is 
confirmed by the presence of the length of the DFT, M, in the 
denominator of (22). The use of zero-padding, however, can sig- 
nificantly increase the time required to perform the filtration step. 

IV. CONCLUSION 

Two methods for filtering projections for the filtered backprojec- 
tion reconstruction algorithm have been evaluated. The two meth- 
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