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Abstract-In this paper a new configuration for a computerized to-
mographic (CT) scanner is presented. The machine is essentially a
hybrid combination of second- and third-generation scanners. A single
source of X-rays and an array of detectors are mounted on a gantry.
The source/detector array grouping traverses the object while the
gantry continuously rotates around the object. Conditions will be
derived so that the projection data will completely cover the Radon
space without any holes or partial overlaps, thus ensuring the existence
of efficiently impiementable reconstruction algorithms for inverting
the data. We will also present a new conholution-backprojection algo-
rithm for reconstructing tomographic images from data generated on
such a scanner.

I. INTRODUCTION
I N the evolution of computerized tomography (CT), one can

see a pattern of machines with increasing resolution and
decreasing data acquisition and reconstruction times [1].
These improvements have not come about without some nega-
tive aspects. The current third- and fourth-generation machines
are far more complex and much more costly than the original
first- and second-generation machines.
Perhaps the most significant improvements in CT imaging

took place when the transition was made from the second- to
the third-generation scanners. In a second-generation scanner,
a narrow-angle source fan illuminates a small number of
detectors, as shown in Fig. l(a). This source-detector combi-
nation makes a linear traverse, as shown in the figure, thereby
generating simultaneously as many projections as the number
of detectors used. At the end of each traverse, the gantry
supporting the source and the detectors rotates to another
angular position around the object, and the translation is
repeated to generate another set of parallel projections. The
translate-rotate movements are repeated until sufficient data
ate collected. Since only a small number of detectors and
associated electronics (sample and hold, and digitization) are
used, such machines are not very expensive. However, due to
mechanical limitations, their data acquisition times are rela-
tively long. In both the rotate and traverse situations a large
mass must be accelerated and brought back to rest. This puts
a limitation on the maximum traverse and rotation velocities.
On the other hand, in a third-generation scanner [see Fig.

1(b)], a wide-angle source fan is used to illuminate an array
that may contain as many as 1000 detectors. The object cross
section to be imaged is contained completely within the source
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fan. During the continuous rotation of the gantry supporting
the source and the detectors around the object, fan-beam
projections are taken in a very short time. The price paid,
however, is the very large number of detectors used and the
associated electronics, which are largely responsible for the
high cost of such machines.
In this paper we propose a new scan configuration which has

the potential of leading to a low cost body scanner. The pro-
posed machine is essentially a hybrid combination of the
second- and the third-generation scanners. The data acquisition
time for this machine should be much less than that for the
second-generation scanners, and the cost should be intermediate
between a second- and a third-generation scanner since only a
few detectors are used.1
As in a second-generation machine, the proposed scanner

also uses a partial fan, albeit it is now wider. The source-
detector combination performs linear traverses, again as in the
second-generation machine. However, the gantry supporting
the source-detector hardware now rotates continuously re-
gardless of the traverses. Thus, the term "continuous rotate"
is applied to this configuration.

In this paper we have first derived the fundamental condi-
tions that must be satisfied by a traverse-continuous-rotate-
type CT scanner. These conditions are necessary for the
existence of efficiently implementable reconstruction algo-
rithms. Basically, these conditions state that as long as certain
periodicity conditions are satisfied, the traverse and the
rotation can be arbitrary functions of time. These conditions
ensure that the Radon space is filled up without any holes or
partial overlaps. We have also presented a design equation that
explicitly brings out the dependence of angle of the source fan
on the ratio of the reverse-traverse to forward-traverse velocities.
This paper also presents the theoretical development of

a new convolution-backprojection algorithm for traverse-
continuous-rotate scanners. Although the filter function used
in this algorithm is the same as for the third-generation fan-
beam scanners [2], [3], the weighting function for the projec-

1One could say that the main thrust of this paper lies in our showing
that in a second-generation machine; the rotation of the source-detector
gantry does not have to be discrete. If a second-generation scanner
were to be designed with the same source-fan angle as in the configura-
tion proposed here, the data acquisition times would become compara-
ble. So far, however, all the second-generation scanners have had a very
small source-fan angle. Compared to such scanners, the proposed ma-
chine would be much faster. (Also note that since the source-detector
gantry has considerable mass, it is believed that the mechanical design
of a second-generation scanner would be much simplified if the gantry
did not have to be rotated in precise discrete steps.)
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Fig. 1. (a) In a second-generation machine, a narrow angle fan illumi-
nates a small number of detectors. (b) In a third-generation scanner,
a wide angle fan is used to illuminate the entire cross section.

tion data is different. We will also show that the point spread
function of the backprojection operator is 1/r. This implies
that if for some reason one did not want to use the convolution-
backprojection algorithm, the reconstructions may still be ob-
tained by post-filtering the backprojection ofthe measured data.

II. THE NECESSARY CONDITIONS
Since the discussion here is presented in terms of the Radon

space, it will first be defined. In Fig. 2(a) is shown an object
f(x, y) which may represent a cross section of a human body.
A line, such as AB shown in Fig. 2(a), is called a ray. The
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Fig. 2. (a) The function f(x, y) represents a cross section whose tomo-
graphic image is sought. (b) In the Radon space, the ray integral
along the line AB is represented by the value given to a single point
with polar coordinates (1, 0).

integral of f(x, y) along a ray is called a ray integral. The
location of a ray is determined by the two parameters I and
0 shown in Fig. 2(a). The Radon space is the (1 cos 0, I sin 0)
plane shown in Fig. 2(b). In this space the ray integral is
represented by the value of a two-dimensional function at a

single point, whose polar coordinates are'(1, 0).
Assume that the object in Fig. 2(a) can be completely con-

tained within a circle of radius R. This circle will be called the
"object circle." It is known that the object can be perfectly
reconstructed from its projection data provided the Radon
space is completely filled, without any holes or partial over-

laps, within a circular domain of radius R (see Fig. 3(a)] [4],

[5].2 In order for this to be true, we will, in this section,
derive the conditions that must be satisfied by a traverse-
continuous-rotate machine.
Although, in this paper, we use the polar coordinate repre-

sentation of the Radon space as shown in Fig. 2(b), one may

2The circular domain of radius R in the Radon space will also be re-

ferred to as the Radon disk.
Our statement here should not be construed to imply that the filling

of the Radon disk without any holes or partial overlaps is always a
necessary condition for perfect reconstructability. However, it is a
sufficient condition. This follows from the inverse Radon transform
relationship.

A

Z. sinG
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Fig. 3. (a) This figure shows the case when the projection data com-

pletely fills up a circle of radius R in the Radon space. In this case,
any object that can be contained within a circle of radius R can be
reconstructed perfectly. (b) An alternate representation of the Radon
space with I and 0 as Cartesian coordinates.

also use the Cartesian coordinate representation shown in
Fig. 3(b), in which I and 0 are, respectively, the horizontal and
the vertical coordinates. In this representation, for perfect
reconstruction of an object contained within a circle of
radius R. the sufficient condition is to fill up the shaded region
in Fig. 3(b) without any holes or partial overlaps.
Comparing the polar [see Fig. 3(a)] and the rectangular [see

Fig. 3(b)] representations, note that the origin in the former is
a point of singularity. That is due to the fact that all the points
on the line l= 0 in Fig. 3(b) collapse into a single point at the
origin in Fig. 3(a). Therefore, a single-valued continuous
function in Fig. 3(b) will be multiple valued at the origin in
Fig. 3(a). The origin in Fig. 3(a) being a point of singularity is
not a matter of grave concern because in this report, when we
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Fig. 4. The source traverses linearly between S1 and S2, while the
gantry supporting the traversing source-detector system rotates con-
tinuously around the object. For mathematical purposes, one can
consider the gantry to be stationary while the object is assumed to be
rotating continuously in the opposite direction.

talk about filling up the Radon disk, we will do so by "sweep-
ing" the disk with contours which pass through the origin, as
opposed to filling up the disk with individual points. Con-
sider, for example, an arbitrary contour AB shown in Fig. 3(a).
Associated with this contour is a unique value at the origin, for
which I = 0. and 0 corresponds to the tangent to the contour
there. If the Radon disk were to be filled up with circular
sweeps of the contour AB (the contour itself may undergo
continuous and periodic deformations during the sweep), for
each rotational position of the contour there would cor-
respond a unique value of (1, 0) at the origin.
In a traverse-continuous-rotate-type machine, the source

detector system traverses as in a second-generation CT scanner.
While this traverse is taking place, the gantry supporting the
source and the detectors continuously rotates around the
object. For mathematical purposes, the rotation of the gantry
is exactly equivalent to the object rotating continuously in the
opposite direction while the source-detector system traverses
back and forth on a fixed gantry, as shown in Fig. 4.
During traverses, the source is considered to be at its beginning

position when the right extreme ray of the source fan is tan-
gential to the object circle, as depicted by position S1 in Fig. 4.
Similarly, the source will be considered to be at the end of its
traverse, as shown by position S2, when the left extreme ray

in the source fan becomes tangential to the object circle after
the source fan has exited the object circle. Let 2D be the
total distance between the beginning and the end positions.
Using Fig. 4, it can easily be shown that

D = R + h sin y
cos 'y

(1)

where h is the perpendicular distance between the center of
rotation and the traverse line and 2y is the source-fan angle.
We will now use S(t) to denote the traverse motion as a

function of time. Also, let (x(t) denote the angle through
which the object has rotated in time t. At some time t, the
source and the object may appear as shown in Fig. 5. Note
that the reference point C on the object circle in Fig. 4 has
now rotated through an angle a(t), while the source is at the
lateral distance S(t). Let us consider a ray SA in the source
fan subtending an angle ,3 with the vertical. The Radon space
(1, 0) representation of this ray is given by

0 =o (t)+i

I = h sin 3 + S(t) cos P3. (2)

Constraints will now be derived on a(t), S(t), h, and y, so
that the Radon space is completely filled without any holes or
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Fig. 5. The geometrical relationship between (a., P) coordinates and the
Radon (1, 0) coordinates is shown.

partial overlaps. In order to do so, let us first examine the
"track" generated in the Radon space by the extreme right ray
of the source fan as it traverses from left to right. This track is
shown in Fig. 6 by the heavy solid line inside the Radon space
circle. The curvature of this track depends upon the relation-
ship between the rotation function ct(t) and the translation
function S(t). If there is no rotation during the traverse, the
curvature disappears and the track becomes a straight line
passing through the origin. The dashed line inside the circle
is the track generated by the left extreme ray. It is easily
shown that any source ray between the left and the right
extremes will generate a track that would lie between the
heavy solid and the dashed lines within the circle in Fig. 6.
Therefore, as the source completes one traverse, the region of
Radon space that it will cover will be as shown in Fig. 7.
As shown in Fig. 7, the Radon space tracks generated by the

extreme left and right rays will be denoted by gL and g',
i= 1, ,N respectively. The superscript i signifies the ith
traverse. In general, the region of the Radon space covered in
the (i + l)st traverse will be as shown in Fig. 8 for clockwise
rotation.3 Therefore, if we want to avoid holes (blank spaces)
and partial overlaps between regions covered in successive
traverses, the following condition must be satisfied:

gW = nt(c+o)t (3)
We will now translate (3) into conditions on rotational and

3Unless otherwise mentioned we will consider only the case of clock-
wise rotation.

traversal velocities. In order to do so, we first need to intro-
duce some time constants associated with the scanning system.
An important constant associated with the system is the time
it takes for the source to traverse from its beginning position
at S1 to the position at 53 where the extreme left ray becomes
tangential to the object circle (see Fig. 9). We will denote
this time by T. The time taken by the source to traverse from
SI to S4, which is the position when the extreme right ray
again becomes tangential to the object circle, will be denoted
by T1. The time taken by the source to traverse from the
beginning position to the end position at S2 will be denoted
by Tf. If Tr is the time for the source to return to its original
position at S1 (no data are taken during the return), the total
time associated with one traverse will be Tf + Tr. This will be
denoted by Tt.
As a source ray, subtending an angle (3 with the vertical,

traverses from left to right, the values of 0 and 1 at different
times for this ray are given by (2). For the ith traverse, let
these functions for the extreme left ray be denoted by 0z(t)
and IL(t), respectively. The corresponding quantities for the
extreme right ray will be denoted by OR(t) and lR(t), respec-
tively. Using (2) and substituting =-y for the leftmost ray
and 3= +y for the rightmost ray, we get

i,J(t) et t) + 'Y
gR Rl' (t) h sin y + S(t) cos y,

n - dTt < t < (i - l)Tt + T, (4)
and
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Fig. 6. The tracks generated in the Radon space by the extreme left
and right source-fan rays are shown. Strictly speaking, the presenta-
tion in the figure of the extreme left and right rays is unjustified,
since the figure depicts the Radon space. The presence of these rays
here is merely symbolic and illustrates their association with the
corresponding tracks within the Radon disk.

(1+1)
(i+l(f) = at y

1I(+)(t) = -h sin +S(t) Cos A,'
iTt + T< t < iTt + Tf. (5)

To satisfy (3) the expressions in (4) must be set equal to the
corresponding ones in (5), after we allow for the fact that the
tracks gjR and g+l1) are not generated at the same time. Sup-
pose the first point (point C1 in Fig. 8) on the gRj track is
generated at tj. It is easy to see that the first point (point
C2 in Fig. 8) on the g(+l) track will be generated at a time
t1 + Tt + T. The symbolic equality in (3) therefore implies

OG(t) = 0(2 )(t + Tt + T)

(t) = 1(4j)(t + Tt + T),

(i - 1)Tt 6 t <Q - I)Tt + T1. (6)

Substituting (4) and (5) in (6), we get

a(t + Tt + T)- a(t)= 2y

S(t + Tt + T) St)= 2h tanyT. (7)
The equations in (7) are the necessary conditions that must

be satisfied by a traverse continuous rotate scanner. These
conditions only guarantee that between successive traverses

holes will not be left in the Radon space. We will now derive
another condition which, when satisfied, results in no holes or

partial overlaps in the Radon space between the first and the
last traverses.
For ease of diagrammatic representation, we will assume

that we are using only half the data collected in each traverse-
the half corresponding to a region OC1D1-and ignoring the
half corresponding to OE1F1 (see Fig. 8). It is clear that no

holes or partial overlaps will be generated between the first
and the last traverse coverages in the Radon space if

N

gR~=gi. (8)

If we include the half of the data that was ignored, every point
in the Radon space will be covered twice when (7) and (8) are

satisfied, which still precludes any partial overlaps.

III. NECESSARY CONDITIONS FOR THE CASE OF

CONSTANT TRAVERSE AND ROTATION SPEEDS
It is inconceivable that in practice the translation motion

will be different from traverse to traverse. Therefore, the
function S(t) may be assumed to be periodic with period Tt.
That is,

S(t + TO) = S(t).
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Fig. 7. As the source makes one forward traverse from left to right, the
region covered in the Radon space is shown shaded here.
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Fig. 8. Regions covered in Radon space during two successive traverses
for clockwise rotation.
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Time=Tf -,

Object space

Fig. 9. This figure shows the different time constants that can be asso-
ciated with the system. T denotes the time taken for the extreme left
ray to become tangential to the object circle. T1 and Tf are similarly
defined.

The same should be true for the rotation function a(t), ex-
cept that due to the rotation occurring continuously in only
one direction, there is a cumulative component in this func-
tion. The periodicity properties of a(t) may therefore be
expressed as

ai(t + Tt) = a(t) +x0o (10)

where ao is the angle through which the object rotates in
period Tt. Substituting (9) and (10) in (7), we get

ot(t + T)- at(t) = 2y- to

S(t+T)- S(t)=2htan y, 0.t.T1. (11)

As shown in Fig. 10, let t be the angle along the circumfer-
ence of the Radon space disk that is covered during each tra-
verse (in time Tt). If both S(t) and u(t) are periodic as dis-
cussed above, this angle will be the same for all the traverses.
The condition in (8) will be satisfied provided

2ir (2t = 2s(12)

A direct consequence of having to satisfy (3) is that a= aO.
This follows from the fact that on the circumference of the
Radon disk, the angle between gL and girl is aQ. On the
other hand, t is the angle between gL and gRj (see also Fig. 8).
Since (3) has to be satisfied, the equality follows.

We will now assume that both the forward traverse velocity
Vf and the angular velocity Va are constant. In this case,
o0f = VaTt(=t), and at(t + T) - a(t) VVa T. Substituting these
into (11) and (12), we get

Vf =T 1 + T

VfT=2htany

VaTt =2N

(1 3a)

(13b)

(13c)

These conditions must be satisfied if the Radon space is to be
covered without holes or partial overlaps.
Rationale similar to the above can be developed for the case

of counterclockwise rotation also. Conditions corresponding
to (3) and (8) are now given by

g(1+1) 1g
gR 9

1 N
gR = gL. (14)

For constant traverse and rotation velocities, these reduce to
the following:

(15a)=N (1-Ta
VfT= 2h tansy
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Radon space

Fig. 10. This figure shows that no holes will be left between the first
and the last traverses provided the angle t is equal to 27r/N for inte-
ger N.

and

VaTt = N. (1Sc)

IV. A DESIGN EQUATION

We will now present what seems like a useful design equation
for traverse-continuous-rotate scanners.
For constant traverse velocities, the ratio T/Tt can be shown

to be equal to (see Fig. 4)

T 2hVrtan.f
Tt 2DVt+2DVr (16)

where Vf and Vr are the forward and the reverse traverse ve-
locities. Using (1), we can write

T kh sin y-= {~~~~~~~~~~~17)Tt (R+hsiny)( +k) (17)

where

Vrk= V .(18)

Substituting (17) in (13a) and (1Sa), we obtain the following
design equation:

(19)t =N[1 +(R + h sily)(1 +k)]++ (9

For given values of h, R, N, and k, the source fan angle is the
solution of this transcendental equation. The above result
applies to the case of clockwise rotation with the positive sign
and to the case of counterclockwise rotation with the negative
sign between the two terms inside the brackets.

It is interesting to examine the implications of the condi-
tions derived in the preceding section on the mechanical
parameters of the proposed scanner. The two parameters that
we have looked at are the normalized machine size and the
ratio of the rotational velocity to traverse velocity.
We define the normalized machine size as follows:

machine size 1 V[D+(h+hd)tan'yJ2+hd
R R (20)

Machine size is meant to be the farthest point on the gantry
from the center of rotation (see Fig. 1 1). The parameter hd is
the perpendicular distance'of the detector line from the center
of rotation. Substituting (1) in (20), we get the following
expression:

machine size
R

= [ +(h/R) sin7 12 Lh\VL1 co(h/R)sin 7 + (h/R + hd/R) tan 7J+ )-

(21)

The ratio of peripheral tangential velocity of the farthest point
on the gantry to the forward traverse velocity is given by

peripheral tangential velocity
due to rotation (machine size) V* (

forward traverse velocity Vf22
From '(13) and (15), we have Va = 2y/(Tt ± T) and Vf =
(2h tan y)/T. Substituting these in (22) leads to the following
expression:

peripheral tangential velocity (machine size/R) -y
forward traverse velocity (Tt/T+ l )(h/R) tan y

(23)

In Table I, using (19), (21), and (23), we have shown the cal-
culated values of the half-fan angle, normalized machine size,
and the ratio of the velocities for 'different values of k for
clockwise rotation. In these calculations we assumed that
hIR = hdIR = 1.2. In Table II are shown results similar to
Table I, except that the rotation is now counterclockwise.

V. POINT SPREAD FUNCTION FOR THE
BACKPROJECTION OPERATOR

We will now show that if the measured data are backpro-
jected without any prefiltering, the degradation in the result-
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Object Space

- D0

Fig. 11. The parameter "machine size" is shown here. It is the distance
of the farthest point on the gantry from the center of rotation.

TABLE I
CALCULATIONS FOR CLOCKWISE ROTATION AND h/R = hd/R = 1.2.

ALSO, N, THE NUMBER OF TRAVERSES, EQUALS 10

machine size peripheral tangential vel.
k y R forward traverse vel.

.75 20.27 2.68 .24

1.00 20.68 2.71 .28

1.25 21.01 2.73 .31

1.50 21.28 2.75 .34

1.75 21.50 2.77 .36

2.00 21.69 2.78 .37

ing reconstruction is convolutional. The point spread function
of this degradation is Ir, which is the same as for the existing
first- through fourth-generation CT scanners [6], [7]. Our
derivation is based on the transformation between (et, 3) and
(1, 0) spaces being regular (which implies that the transforma-
tion is one-to-one and onto). In Section VI we will prove this
property, and in Section VII we will use the same property to
derive a convolution-backprojection algorithm for traverse
continuous rotate scanners.

A ray integral4 is defined by the following relationship:

po(l) ff(xy)(x cos 0 +y sin 0 ) dx dy. (24)

4Indefinite integrals have the implied limits (-ao, e).

TABLE II
CALCULATIONS FOR COUNTERCLOCKWISE ROTATION AND h/R = hdIR = 1.2.

ALSO, N, THE NUMBER OF TRAVERSES, EQUALS 10

machine size peripheral tangential vel.
k y R forward traverse vel.

.75 16.08 2.40 .23

1.00 15.79 2.38 .27

1.25 15.57 2.37 .30

1.50 15.39 2.36 .32

1.75 15.25 2.35 .34

2.00 15.14 2.34 .36

The quantity Po (1) is the value to be assigned to the point
(1,0) in the Radon space. For traverse-continuous-rotate
scanners, the rays are more conveniently characterized by
(ot, j) parameters presented in Section II. For each traverse
there exists a one-to-one transformation between (1, 0) and
(a, j3) coordinates, which is given by (2). Substituting (2) in
(24), we get

q.(s)= f(x y) 8 [x cos (a + )+y sin(t +i)
-h sin3-S(t) costBdx dy (25)

where q.(,) represents the projection data of the traverse-
continuous-rotate scanner.
Given the parallel projection data po(l), the backprojection
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is defined by the following integral:

g(x y) = 2 p0(l)dO

where

I=xcosG+ysinO. (27)

This relationship may be transformed into (oa, (3) coordinates
by using (2), provided that the transformation is regular:

g(x y)A 2 p.(h sin3+S(t) cosi3) y da (28)

where i? is a contour of integration in the (a, j3) plane. The fol-
lowing equality, which is obtained by substituting (2) in (27),
defines the contour

71:Xcos(a+I3)+ysin(a+t3)-S(t)cosj3- hsin3=0O. (29)
Equation (28) may be expressed as a sum of integrals, each
member of this sum performing an integration only over those
values of oa that are covered in one traverse:

g(X,y)= I E J ° q.(P) I+ ag da (30)

where a' is the range of a(t) covered in the forward traverse
only, and is given by

This integral may be written in the form

(26) g(x,y) = 2fdx' dy' f(x',y')

N (-oi ata(3* E r 6 [a(c, A)] |1i + - da
where

a(a, 3) = (x' - x) cos(a + (3) + (y' - y) sin(a + (3).

(34)

(35)
Consider only the summation and the inner integral of (34),
which may be shown to satisfy the following equality [9]:

ril1)ci +& 8[a(a,)] I+I a Atf= 1+- daL

(36)
aa aas ha!Op )(t

where we have used the fact that a(a, 3) is equal to zero at
only two points, denoted by (a1, (31) and (a2, 32), in the (a, ()
plane. This follows from the discussion in Section III where
we have shown that the Radon space is covered exactly twice.
Equation (36) can be further simplified by noting that

3a aa
aa a(3 (37)

V kT'
which follows from the right-hand side in (35) being a func-

(31) tion of (a + j3). When (37) is substituted in (36), the result is

In (30) we have also used the fact that poa+g(h sin (3+ S(t) cos ()
is by definition the new projection data represented by qf(P).
The values of ( to be used in (30) are determined by (29).
Equations (25) and (30) are by definition the projection and
backprojection processes of a traverse-continuous-rotate scan-
ner. We now want to show that g(x, y) in (30) is related to
f(x,y) in (25) by convolution with 1hr.

Substituting (25) in (30), we get

g(x,y) = 2 Y dx'dy' f(x',y')

r(i-i)aO+ otI
f*il)Oeo+~ 8[x'cos(a + A) +y'sin(a +()

(i- 1)Cio

- h sin( - S(t) cos(31 1+ - da.au

In this integral the argument of the delta function can be sim-
plified using (29):

g(x,y) = dx'dY'f(x',y')

(i-i)aO at
* ~ ~~K[X- X)Cos(a+ )
(i- l)ao

+(y'-y)sin(a+ 0)] 1+ - da.Sa

N il)0i0 aa
iE J ~-~5[a (q, )] I+ Ta da

1 + 1 .~~+(38)|aaaa (c aP)=(ald1)1 aa/aal (a,#)=(c(2,p2))
From (35), the partial of a(a, 3), with respect to ca, is given by

aa -(x - x) sin(az +3) + (y' - y) cos(a +j) (39)

Equation (38) requires this derivative to be calculated at the
two roots of a(az, as). From (35), both the roots satisfy the
condition

tan(a1+ pi) =(_3X')- x

(32) Substituting (40) in (39) leads to

(40)

Ia aaa
ao (of3)=(o1 1) al ( 19)=(02 2)

= (x'-x )2 +(y fn_y)2
Substituting (38) and (41) in (34) leads to the final result

(41)

gxy) =JJ IYI) /(X' - X)2 + (-y_ 2 dx'dy'. (42)

This relationship can be symbolically expressed as

(33) g(x,y) =f(xy) ** 1
r

(43)
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Fig. 12. Shown here are the regions of the (a, A) space that are covered
during successive traverses.

where r = VT~i~ and ** indicates two-dimensional con-

volution. Our final result indicates that when data are col-
lected without any holes or partial overlaps, the traverse-
continuous-rotate scanners share with other machines the
fundamental property that the point spread function of the
backprojection operator is 1 r.

VI. PROPERTIES OF THE TRANSFORMATION
BETWEEN (1, 0) AND (a, 3) SPACES

The preceding section utilized the fact that the transforma-
tion between (1, 0) and (a, (3) spaces is regular (regularity im-
plies one-to-one5 and onto [8]). The same property is also
used in the next section where we will present a convolution-
backprojection reconstruction formula. In this section we will
prove this property.
A transformation is regular if 1) it is continuous; 2) its

partial derivatives are continuous; and 3) the Jacobian of the
transformation is nonzero in the region of interest. We will
now show that the transformation in (2) satisfies all these
conditions. We will only consider the case of constant rota-

5The reader might wonder about the property of the transformation
being one-to-one, given the fact that (as was mentioned in Section II)
the origin within the Radon disk is a point of singularity. Due to po(l)
being multiple valued at the origin, the origin will get transformed into
a contour (consisting of many disconnected pieces) in the (a, At) space.
This singularity at the origin is merely an artifact of the polar coordi-
nate visualization of the line-integral data. For analytical discussions of
the transformations between (1, 0) and (ct, JI) spaces, the appropriate
representation of the (1, 0) space is as shown in Fig. 3(b), and no singu-
larity exists there. However, since the end results remain the same, we
will continue to use the polar coordinate representation here.

tional and traverse velocities. In this case, the rotational angle
a(t) and the traverse position S(t) are related by the following
equation:

DS(t)= , [2(a(t)- (i- l)ao)- a']

(i - l)Tt < t < (i - 1) Tt + Tf (44)

where a' is the angle of rotation during the forward (left to
right) traverse only. Since the forward traverse time is k/(l + k)
of the total time for one traverse, a' is given by

f
k

xx = +~kTtVa
+k

Substituting (44) in (2), we get

1= h sin (3+ I (a(t) - (i - l)ao) - D] cos

(45)

(46)

We already know that in the (1, 0) space the projection data
occupy a circular region as shown in Fig. 3. In the (a, () space,
the region occupied by the projection data are as shown in
Fig. 12. For example, during the first forward traverse, for
each value of a between 0 and a', the angles range from - y
to +-y to cover the source fan. During the return traverse, the
object rotates from at' to aO. After that, the collection of the
projection data begins again for the second traverse, and so on.

This is shown diagrammatically in Fig. 12. During the first
traverse, consider the ray given by = +'y, which is the ex-

treme right ray in the source fan. As a increases from 0 to a1,

y

af

(Ct, S) space

-Y

0
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Radon Space

I s i nG

D.~~~~

CA2
A

eicoso

Fig. 13. The shaded area in the Radon space shown here is related by a
one-to-one transformation to the first rectangular "box" on the left
in Fig. 12.

where a1 is less than a' and is equal to VaTl (see Fig. 9), the
track generated in the (1, 0) space is C1OC2 shown in Fig. 6.
For values of a between a1 and at', the track generated is a
continuation of C1OC2 as shown in Fig. 13 by the curve
ClOC2C'. Similarly, one can show that the line CD in Fig. 12
corresponds to the curveDD OD2 in Fig. 13. Therefore, the
shaded area in Fig. 13 corresponds to the first shaded box on
the left in Fig. 12. Suppose we assume again, for the sake of
diagrammatic representation, that only half the data in each
traverse (corresponding to Cl OD,) are retained for reconstruc-
tion, the successive boxes in Fig. 12 will then fill the Radon
space as shown in Fig. 14.
Since the transformation equations in (44) are continuous

for each region in Fig. 12 and its corresponding region in Fig.
13, and, also, the partial derivations of the equations are con-
tinuous in the same regions, in order to prove regularity all we
have to prove is that the Jacobian of the transformation does
not go to zero.
The Jacobian of the transformation in (46) is given by

al al

act ap ao ao ~~~~~~~~~(47)

Using (2) in (47), we obtain

(2D )cos3P+ (.ia - D) sin P (48)

for 0 -< a a'. It can be shown that J >0 provided the fol-
lowing condition is satisfied:

(2 -) > (2D/') -h (49)

Therefore, this condition must be satisfied in addition to those
in (13).

VII. A CONVOLUTION-BACKPROJECTION
RECONSTRUCTION ALGORITHM

The inverse Radon transformation can be represented as a
convolution-backprojection integral given by

R

f(X,y) J P(l)H(x cos0+ y sin 0 -l) dl dO (50)

where H(u) is the filter function which nominally obeys the
following transform property:

H(u) = fIwI ej21TWU dw. (51)

Equation (50) may also be expressed as

f(x, y)A= p0(l)H(x cos 0 +y sin 0 - l) dl dO.
O-R

(52)

Since the transformation between the Radon space depicted
in Fig. 14 and the regions of the (a, 13) space shown in Fig. 12
is continuous, one-to-one, and onto, the above integral may be
expressed in the (at, 1) space by using (2):

N CC
f(xy)= 2E JJ q.(P)H[x cos(a + 1)

ii region i

+y sin(a+13)- h sin13- S(t)cos 1] JdP1da (53)
where J is the Jacobian and where region i for the integration
corresponds to D OC'D20C1 in the Radon space in Fig. 13.
In the (ax, 13) plane, region i is simply the ith shaded box from

92

c

1



NAHAMOO et al.: ALGORITHMS FOR CT SCANNERS

(A sino )

RADON
SPACE

(z cosa)

i: i th Traverse

Fig. 14. This figure shows how the Radon space is covered by the dif-
ferent shaded regions in Fig. 12.

the left in Fig. 12. Therefore, the limits of integration may be
explicitly stated as follows:

(i-1)tO+ tw
f(x,y)= 2 E f qcj(1)H[x cos+(a+1)

i=l (i- Oco -1e

+ysin(a+13)- hsin3-S(t)cos13]Jdpda.
As with the third-generation scanners, it is easier to derive
convolution-backprojection algorithm when the image is
pressed in polar coordinates. Using

x =rcoso
y = r sin 0

we can rewrite (50) as

fr¢)=2 E
(i-1)oo

q-(PH[L sin(g'-'V)] Jd da
Or-l

where

L = /[rcos(a-¢ -)S(t) + [rsin(a-)+ hi2

and

tan 131= rcos(a- k)- S(t)
rsin(a- 0)+h

WI = (wL sin PIP(), we can show that

/ 2

H(L sin 3)=IL sin 13 H(j3). (59)

Substituting (59) in (56) and also using the expression for the
Jacobian derived in the preceding section, we get

(54)
1 N f)ao+al~te f(r, q0) = E J2

;ex- 2i=1 (i-1)x0 L

(55)
qO(1) W(at, ) G(O'- f)d# da

where the convolution function G(13) is given by

G(P) = (i) H(P)

(60)

(61)

which is the same as that used by the third-generation recon-
struction algorithm. The data weight function W(a, j) in (60)

(56) is given by

W(, ) (a' ) [a' ( ( )ao) ]Dsin

(57)

Substituting u = L sin in (51) and using the transformation

(62).

A practical implementation of the prefiltering algorithm can
be obtained by discretizing the above equations. It is also pos-
sible to derive a new set of equations based on a new coordi-
nate system (a, v), which when discretized will yield detectors
that are equally spaced. The two algorithms will be referred
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to as equal angle and equal space configurations, respectively.
Referring to Fig. 5, the new variable v is related to fl with

v= h tan P. (63)

Following the procedure used to obtain (60), one can derive
the reconstruction formula for the equal space configuration:

l N '(f-l)O+0a' I
f)2 ,= J'i 1)ao Ui

V

f q.(v) H(v' v) TV(a, P) dv da
-v

where

P, =h [r cos(a - 0) - S(t)]
r sin(a - p) + h

U= 1 +
r sin(a- 0),

V = h tan ,

and

- (2D/a' - h)h + [2D/a'(a - (i - 1)ao) - DIv
h /h2 -+P2

VIII. COMPUTER SIMULATION RESULTS
In our analytical discussions so far, we have referred to q,(P)

as the projection data which, given the entire range of a and
A, is indeed correct. In practice, while the continuous traverse
and rotation are taking place, one is likely to collect the line
integral data by sampling the outputs of the detectors (shown
in Fig. 4) at regular time intervals. The readings from all the
detectors at a single instant of time will be called one "flash."6
The number of flashes during each traverse will be denoted by
Nflash . The symbol Ndet will denote the number of detectors
used (see Fig. 4). The total number of traverses, which in the
preceding theoretical analysis was represented by N, will now
be denoted by Ntrav. Note that the line-integral data are col-
lected only during the forward traverses.
A computer program was written to generate the line-integral

data for the Shepp and Logan [10] phantom shown in Fig.
15(a). Because of the limitations on computer time and mem-
ory, the number of line-integrals used was small compared
to what is typical in industry today. Fig. 15(b) shows a

128 X 128 reconstruction of the phantom using the convolution-
backprojection formula of (64) and (65) with Ndet = 40,
Nt'ash = 100, and Ntrav = 23. The ringing artifacts caused by

61n actuality, of course, the detector readings cannot represent the
instantaneous photon flux, but will be equal to its integral over the pre-

ceding few milliseconds. We will assume that this integration time at
the detector output is short enough so that the rotation of the source-
detector gantry during this interval may be ignored. This assumption is
also made in the analysis of the third-generation scanner data, where
any rotational smearing caused by the nonzero integration time at the
detector is usually ignored.
We feel that flash, as opposed to projection, is a better word for the

data so collected, since at the instant of measurement the source fan
only partially illuminates the object.

(0)

(c)

Fig. 15. (a) The Shepp and Logan head phantom. (b) A 128 X 128 re-
construction of the phantom based on the convolution-backprojection
equations (64) and (65) with 40 detectors, 100 flashes in each tra-
verse, and 23 traverses. (c) A median filtered version of the same
reconstruction.

the "skull" in the reconstruction are particularly noticeable.
They are a manifestation of the bandlimited nature of the dis-
crete implementation of the algorithm [11], [121. Fig. 15(c)
shows a median filtered version of the reconstruction. Median

(64)

(65a)

(65b)

(65c)

(a)

(65d)
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(b)
Fig. 16. (a) A numerical comparison of the gray levels in the original
phantom of Fig. 15(a) and its reconstruction in Fig. 15(b) over the
middle horizontal line (y = 0). (b) Here the same comparison is
shown for the median filtered version in Fig. 15(c).

filtering was done with a 3 X 3 window. Fig. 16(a) shows a

numerical comparison of the original phantom [see Fig. 15(a)]
and its reconstruction [see Fig. 15(b)] on a horizontal line
passing through the center of the image (this line corresponds
to y = 0 in [10]). Fig. 16(b) shows the same comparison for
the median filtered reconstruction of Fig. 15(c). Fig. 17(a)
and (b) corresponds to Fig. 16(a) and (b) for the case of a

horizontal line passing through the three very small ellipses
near the bottom of the phantom (this line corresponds to

y = -0.605 in [10]). It is clear that the number of line inte-
grals used was not adequate to resolve the three ellipses.
Most of the artifacts and noise in the reconstruction in Fig.

15(b) can be attributed to the data collection density (as
represented by the chosen values of Nflash, Ndet, and Ntrav)
not being large enough to do adequate justice to the large
transitions at the edges of the "skull" (the outermost ring).
In Fig. 18(a) is shown the same phantom without this ring.
Fig. 18(b) shows its reconstruction using the same Nflash,
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2.0 2.0

1.025

(a) 1 .0 0

.9750

0.01 0.0
.9500 - 0

-1.0 -.0 0.0 50 1 .0

1.050

1 .025

2.0

I I
2.0

II

(b) 1 . 0 0 0

.9750

0.00 0.0

.9500-
-1 .0 -.50 0 .0 .50

Fig. 17. (a) This figure shows the comparison between the original and
its reconstruction in Fig. 15(b) at the y = -0.605 line. (b) The cor-
responding comparison for the median filtered reconstruction.

1.0

Ndet, and Ntrav as in Fig. 15(b). Fig. 18(c) and (d) shows the

numerical comparisons corresponding to Figs. 16(a) and 17(a)
for the complete phantom.
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Fig. 18. (a) Shown here is the phantom without the outer ring. (b) A
reconstruction of (a) with the same Nflash, Ndet, and Ntrav as in
Fig. 15(b). (c) A numerical comparison corresponding to Fig. 16(a).
(d) A numerical comparison corresponding to Fig. 17(a).
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Rapid Execution of Fan Beam Image Reconstruction
Algorithms Using Efficient Computational

Techniques and Special-Purpose
Processors
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ARNOLD H. LENT, AND EARL E. SWARTZLANDER, JR., SENIOR MEMBER, IEEE

Abstract-Rapid advances during the past ten years of several forms
of computer-assisted tomography (CT) have resulted in the develop-
ment of numerous algorithms to convert raw projection data into cross-
sectional images. These reconstruction algorithms are either "iterative,"
in which a large matrix algebraic equation is solved by successive ap-
proximation techniques; or "closed form." Continuing evolution of the
closed form algorithms has allowed the newest versions to produce
excellent reconstructed images in most applications. This paper will
review several computer software and special-purpose digital hardware
implementations of closed form algorithms, either proposed during the
past several years by a number of workers or actually implemented in
commercial or research CT scanners. The discussion will also cover a
number of recently investigated algorithmic modifications which reduce
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the amount of computation required to execute the reconstruction
process, as well as several new special-purpose digital hardware imple-
mentations under development in our laboratories at the Mayo Clinic.

INTRODUCTION

D APID advances during the past ten years of several forms
^ of computer assisted tomography (CT) have resulted

in the development of numerous algorithms to convert raw
projection data into cross-sectional images. These reconstruc-
tion algorithms are either "iterative," in which a large matrix
algebraic equation is solved by successive approximation tech-
niques; or "closed form." Closed form reconstruction algo-
rithms which operate in the frequency domain are generally
referred to as Fourier algorithms; those which operate in the
spatial domain are referred to as filtered back projection
algorithms. Though the iterative algorithms are frequently
employed when the signal/noise ratio of the input data is low,
or when several of the projections are unavailable, they are in
less frequent use for high quality data, since iterative solutions
consume large amounts of computer time. Continuing evolu-
tion of the closed form algorithms has allowed the newest
versions to produce excellent reconstructed images in most
applications.
This paper will review several computer software and special-

purpose digital hardware implementations of closed form
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