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A method is presented for estimating the geometrical parameters for a cone beam detector
geometry from the coordinates of the centroid of a projected point source sampled over 360°.
Nonlinear expressions are derived for the coordinates of the centroids in terms of the geometrical
parameters which include: the two-dimensional coordinates of the projection of the center of
rotation onto the detector image plane; the focal length; the distance from the focal point to the
center of rotation; and the spatial coordinates of the point source itself. Experimental data were
obtained using a rotating gamma camera with a symmetrically converging collimator. The
Marquardt algorithm was used to estimate the parameters for this particular cone beam
geometry. The method was able to estimate the geometrical parameters and evaluate the accuracy
of the collimator construction.

Key words: estimation, cone beam, collimator, single-photon emission computed tomography, x-

ray computed tomography

I. INTRODUCTION

Today the rotating scintillation camera is the most widely
used single-photon emission computed tomography
(SPECT) system in clinical nuclear medicine. It has the ad-
vantage of being able to perform both body and brain
SPECT imaging as well as conventional planar imaging.
However, its sensitivity is less than optimum for imaging
smaller organs such as the brain and the heart.

Steps have been taken to improve the sensitivity of SPECT
imaging of smaller organs by utilizing fan beam collima-
tors.' A multislice, short-bore fan-beam collimator that
focuses to a line oriented parallel to the axis of rotation was
originally developed for SPECT.! This was followed by a
specially designed, long-bore fan-beam collimator for imag-
ing the brain that would allow the face of the collimator to
approach near the head and still allow the camera to clear
the patient’s shoulders.?

More recently, cone-beam collimation has been developed
to optimize further the sensitivity of rotating camera SPECT
systems.*~® Before this development, cone-beam collimation
had been used for some time in nuclear medicine for planar
imaging of small organs.®~'? Two types of cone-beam geome-
tries that have been utilized are the standard cone-beam col-
limator which consists of holes that converge to a single
point behind the object, and the pin-hole collimator which
has a focal point at the aperture thus forming an inverted
image. Jaszczak and co-workers*® originally proposed the
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extension of the cone-beam technology to SPECT imaging
and later demonstrated that it offered an increase in effi-
ciency of 2.5 times that of parallel-hole collimator systems
with the same resolution.®

Various converging beam geometries have emerged for
SPECT imaging of the brain. Two geometries were proposed
by Jaszczak.*® In one configuration, the focal point was
asymmetrically located below the detector. In the second
configuration, the focal point was symmetrically located rel-
ative to the face of the camera, but the camera was tilted so
that it could come close to the head yet still clear the shoul-
ders. Still another collimator configuration was proposed by
Hawman and Hsieh” in which the collimator holes converge
to two distinct lines which are orthogonal but at different
distances from the face of the collimator. This astigmatic
collimator was designed so that the head, which is more el-
liptical than circular, could fit better within the field of view.

In our application of heart imaging,'* we have considered
only a symmetric cone-beam geometry as shown in Fig. 1.
The focal point is symmetrically located and the camera face
remains parallel to the axis of rotation. The application of
cone-beam collimation should give a significant increase in
efficiency over that which is obtained with present cardiac
SPECT imaging using parallel-hole collimators.

An important aspect of applying cone beam geometry to
SPECT, in addition to the need for special reconstruction
algorithms,'*-?° is the ability to measure precisely the geo-
metrical parameters of the physical system consisting of col-
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FIG. 1. Artist conception of cone-beam geometry for cardiac SPECT imag-
ing.

limator and camera. The importance of this has previously
been demonstrated for both parallel and fan-beam geome-
tries to insure high-quality, artifact-free reconstructed im-
ages.>®=*? For parallel geometry, the perpendicular projec-
tion of the center of rotation onto the camera face is required
and needs to be determined periodically in case there is any
change in camera electronics or gantry mechanics. A point
source or a line source is placed off the center of rotation and
several complementary views 180° apart are obtained. The
transverse coordinate of the projection of the center of rota-
tion onto the image plane is determined by summing the
transverse coordinate of the centroid of the projected point
source in two complementary views and dividing by two.
The average projection of the center of rotation is then deter-
mined by averaging the values obtained from all the comple-
mentary views.

Recently’? we showed that the geometrical parameters for
a fan-beam geometry could also be measured from projec-
tions of a point source. Here we extend this method to a
symmetrical cone-beam geometry, but the methods are also
applicable to various other cone-beam geometries. Equa-
tions are presented that relate the geometrical parameters to
the centroid of the projections of a point source. As in the
fan-beam case, the measured projections are not a linear
function of the geometrical parameters; therefore, nonlinear
techniques are required to estimate the parameter values.
Results are presented where the method was used to estimate
the geometrical parameters of a SPECT system with a cone-
beam collimator. We show that the technique is also useful
for evaluating the accuracy and precision of the manufac-
tured collimator.

Il. CONE-BEAM GEOMETRY FORMULATION

The parameters of the cone-beam geometry shown in Fig.
2 are the distance D from the focal point to the center of
rotation (focus-to-center distance), focal length D’ (the fo-
cus-to-detector distance), and the location (c,,c.) of the
projection of the center of rotation onto the camera face.
Notice that it is assumed that the center of rotation lies along
the line of the perpendicular projection of the focal point. In
previous work with fan-beam collimators,** a parameter was
included to allow for any potential shift in the center of rota-
tion off of the midline of the fan beam. However, it was found
that the estimated value for the shift was very close to zero
for a well-constructed collimator.** Also, computer simula-
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FIG. 2. The parameters xo, ¥y, 2, C;, ¢z, D, D’ of the cone-beam geometry are

estimated by placing a point source at (x,,Vp, Z;) and obtaining data for
various projection angles . Egs. (8) and (9) give the functional relation-
ship between these geometrical parameters and the centroid coordinates
(p,7).

tions showed that the additional shift parameter complicat-
ed the problem because it is highly correlated with the pro-
jection coordinates of the center of rotation and can produce
erroneous results for the estimated parameters if the initial
estimates are not carefully selected. For these reasons, a shift
parameter was not used in the cone-beam formulation.

The equation for the cone-beam projection operator can
be derived using the expressions

(§—c:)/D'=(xsina—ycosa)/
(xcosa+ysina + D), ()
(§—c)/D'=z/(xcosa+ysina+ D), 2)

which are derived from the similar triangles shown in Fig. 2.
These parametric equations describe a line of projection for
the cone-beam geometry and relate the object coordinates
(x, y, z) to the projection coordinates («,£,$) where the co-
ordinates £ and { denote the corresponding distances from
the edges of the measurable detector region and a is the pro-
jection angle. Using the expressions in Egs. (1) and (2), one
can write the cone-beam projection operator in terms of the
product of two delta functions:

f J-f(x,)’,z)(s[(é‘—cg)(xcosa

— o —

P(ag,0) = I

+ysina+ D)/D’' —xsina + ycos a
XO[(§—c ) (xcosa+ ysina

+D)/D’' —z]dxdydz. (3)
Mathematically, a point source
fx,p, 2) =5(x——x0)5(y—y0)6(z—zo) s 4)

located at (xg,y0, 2,) is used to develop a relationship
between the parameters of the cone-beam geometry shown
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in Fig. 2 and some measurable parameters; namely, the cen-
troids of the projected point source. An expression for the
projections of the point source is obtained by substituting
Eq. (4) into Eq. (3) to give
R(a,8,5;8) = 6[(§ — ) (xpcos @ + y,sina + D)/D’

— X Sin @ + y, cos a]

X8[(§— ce)(xgcosa+ yysina + Dy/D’

- z()] ’ ( 5 )
where B = (¢,¢.,.D',D,x0,p0, 2,) is a vector with compo-
nents which are the parameters of the cone-beam geometry
plus the coordinates of the point source. For the angle , the
centroid of a projection is [p(a; 8),7(a; )] defined by

pla;B) = ffR(a,g,;;mgdfd;/
ﬁR(a,g,gm dg d¢, (6)
7(a; ) = ffR(a,g;;ﬁ) ¢ dg dg /

J?R(aé,a/)’) d¢ dg . (N

Substituting Eq. (5) into Eqgs. (6) and (7) and integrating,
we obtain the following expressions for the centroid coordi-
nates in terms of the parameters for the cone-beam geome-
try:

pla; B) = D'(x,sina — y, cos a)/
(xpcos @ 4+ yysina+ D) +c,, (8)
(& B) =D'zy/(Xgcos a + pysina + D) + ¢, . (9)

The geometrical parameters of a cone-beam imaging sys-
tem are estimated by obtaining experimental measurements
of a point source which is placed in the field of view of the
scanner away from the center of rotation. Projections of the
point source are collected and usually digitized into 64 X 64
or 128 X 128 matrices. By discretizing Egs. (6) and (7), the
centroids, (p,,.7,, ), m = 1,...,M, are determined for each of
the M projection matrices at angles «,, using:

N N ~ N N
ﬁm = E Z gnR(am’gn’gk)/ z Z R(a:n’gn’gk) ’
3 Iln=1

— k=1n=1

(10)
N N ~ N N .
%m = Z gkR(amygnygk)/ z Z R(am9§n’§k) H
hk=1mn=1 k=1n=1
(1)

where ﬁ(am,§n,§k), n=1,.,N, k=1,...,.N, are the sam-
pled intensities in the projection matrices.

The parameters of the cone-beam geometry are estimated
by minimizing the chi-square (y?) function
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¥'B) =3 A{[pw —pla,; B/,

+ [#0 —T(@,; B)] /02 )}, (12)
where p(a,,; B) and 7(a,,; B) are given in Egs. (8) and
(9); and (p,,,7,,) are the centroids calculated in Egs. (10)
and (11). Assuming Poisson statistics, the variances af,,,,
and o2, are determined from Egs. (10) and (11) using
propagation of errors to give

0l = Hz );giﬁ(am,g,,,g)] [z ;szm,gm;k)]z
- [ eR@nbo] |33 Rantb]|

A -4
X[;Z”R(amygn’gk):l ’ (13)

ot ={[S S iR @t [S 3 Reamitit|

k n

[ysetesofgsie.ss))

~ —4

x|S S Rt (14)
k n

One can show that the expressions in Egs. (13) and (14) are

approximately equal to the variance of the projected point

source distribution divided by the number of samples.

iit. ESTIMATION ALGORITHM

The process of minimizing Eq. (12) to determine esti-
mates of the cone-beam geometry is a nonlinear estimation
problem since the functions p(a; 3) and 7(a; ) in Eqs. (8)
and (9) are nonlinear in the vector variable 3. The y* func-
tionin Eq. (12) is minimized by using an iterative algorithm.
At the i + 1th iteration, the estimate

B'r'=8"+6, (15)

is obtained by adding to the estimate ' at the ith iteration, a
correction vector 8. The correction § is determined by solv-
ing the following system of equations®*:

(B+ADS6=E, (16)

where [ denotes the identity matrix. The elements of the
matrices B and E are given by

Bz[bij]7X7
_ f 1 dola,;B) dpla,;B)
rn:laf}m aﬁ, aﬁj
M ar(a,;B) dr(a,;B) |’
s i m(a,;B) drla B] ,
m=10 4, aﬁl aﬁj

(17)
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E= [ei]l><7
M dpla,;B) ., )
= = an m (am’ﬂ) /(7 m
LZ.I R 170,
M a . 1x7
+ Y M[?m—f(am;ﬂ)]/aim] ,
m=1 83,

(18)

where (B,,..., B7) = (¢z,¢e,D ', D,X0,Y0, Zo)- The value of 4
is determined so that the correction vector 6 is the optimum
choice between a Taylor series correction vector and a gradi-
ent vector.

To obtain the partial derivatives in Egs. (17) and (18), we
set

g=D'(x,sin a — y, cos a) (19)
and

h=xycosa+y,sina+ D, (20)
so that we might simplify Eqgs. (8) and (9):

plasB)=g/h+c,, (21)

T(a; B) =D'zo/h + ¢, . 22)

Then it is possible to derive the partial derivatives of p(a; )
which are given by

%P _% _, (23)

B, dc;

9 _ % _ (24)

B, dc;

dp dp

P _ P _e/hDy, 25

3. 3D’ 8/ ) (25)

dp _ 9p 2

L= = _g/h?, 26

B, b ¢ (29

dp _ dp o

L = —[D'hsina—gcosal/h?, 27N

aBs  Ix,

dp _dp .

Lt =1 =[—~D'hcosa—gsinal]/h?, (28)

dBe Wy

dp _ dp

apB; dz, %)
and the partial derivatives of 7(a; ) which are given by

ar ar

— =—-—=0, 30

B, dc, G0

ar ar

—===1, 31

ap, dc, (D

ar ar’

—_—— /h’ 2

B, oD’ 2

ar Or

= 2 _ D hZ,

9B, D id %)

Jr  oOr

— == —D'z,cosa/h?, (34)

dPBs  Ix, °
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Jr oJr )

— =— = _D'z,sina/h?, (35)
Bs Iy, °

ar or

— =="=D'/h. 36
B, oz 30

The implementation of the Marquardt algorithm is out-
lined in our previous paper.>* The algorithm selects 4 to
ensure that the optimum choice for & is taken. An especially
nice feature of the algorithm is that the direction and step
size are determined simultaneously. Starting with initial esti-
mates, new values of the geometrical parameters are deter-
mined from Eq. (15). The new estimates in the iterative
algorithm sequentially approach a minimum solution to the
Xz function in Eq. (12). At each iteration, the measured
centroid of the projected point source is compared with the
expression in Egs. (8) and (9). Thus, the algorithm is effec-
tively evaluating those parameters which make Egs. (8) and
(9) come nearest the measured centroid of the projected
point source to obtain an optimum fit to the data.

The statistical errors in the estimated parameters are giv-
en by the covariance matrix*

b=B"", 37

where the matrix B is evaluated substituting the estimated
parameters into Eq. (17). The diagonal elements of the co-
variance matrix are the variances for the estimated param-
eters. The off-diagonal elements are the covariances which
are a measure of the degree of correlation between the geo-
metrical parameters.

For parameters that are highly correlated, the choice of
the initial estimates becomes more important in terms of
obtaining realistic solutions. It can happen, if the initial esti-
mates are not near the correct values, the parameter esti-
mates may converge to a local minimum with unrealistic
results and still give a good fit to the data. Also, if these
estimated parameter values are incorporated into the recon-
struction algorithm, the reconstruction results will probably
not show any image distortions. However, this is not very
appealing if one wants to know a parameter exactly, such as
one would in using the estimated collimator focal length to
compare the manufactured accuracy with the designed
specifications of the collimator. Therefore, it is suggested

‘that the initial estimates be chosen carefully, and the degree

to which this is important depends upon the parameter.

IV. EXPERIMENTAL RESULTS

A study was performed to evaluate the technique for esti-
mating the parameters of a converging collimator (GE low-
energy converging collimator, H2503AD, GE Medical Sys-
tems, Milwaukee, WI) for which the geometry is shown in
Fig. 3. A point source of **™Tc was placed at four separate
positions in four separate studies. For each point source lo-
cation, the camera (GE 400 AC/T, GE Medical Systems,
Milwaukee, WI) was rotated about its center of rotation to
obtain a set of 128 projections over 360°. Each projection
data set illustrated in Fig. 4 was digitized into a 64 X 64 array
representing 6.4-mm pixels in the image plane.
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F1G. 3. The experimental setup showing the location of the point sources for
each of the four studies and the dimensions of the cone-beam geometry.

After the data were acquired, the centroid coordinates for
each projection were determined using Eqs. (10) and (11)
and the measurement errors for the centroid calculations
were determined using Eqs. (13) and (14). Table I lists for
every other angle sampled over 360°, the coordinates and the
errors for the projected centroids of the point source labeled
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Fi1G. 4. Sketch showing the projections.of the point source onto the two-
dimensional detector. Using Eqgs. (10) and (11) the centroids (p,7) of these
two-dimensional projections were calculated. Notice that profiles change as
a function of the distance the camera is away from the point source.

3 in Fig. 3. The data show small statistical errors and are
representative of data from the other three point source loca-
tions. In comparing these errors with those calculated from a
one-dimensional data set used to estimate the parameters for

TaBLE L. Centroids [Egs. (10) and (11)] and errors [Egs. (13) and (14)] are calculated from cone beam projection data for the point source positioned at

location 3 in Fig. 3.

Centroid Errors Centroid Errors
Angle p T g, o, Angle p 7 o, o,
Frame (Degs) (cm) (cm) (cm) (cm) Frame (Degs) (cm) (cm) (cm) (cm)

1 0 27.5972 29.4439 0.0095 0.0093 65 180.0 14.7433 29.2305 0.0091 0.0102

3 5.6 27.6134 29.6028 0.0086 0.0091 67 185.6 14.9524 29.0984 0.0094 0.0106

5 11.2 27.5216 29.7391 0.0085 0.0091 69 191.2 15.2223 28.9960 0.0094 0.0103

7 16.8 27.3440 29.8599 0.0085 0.0092 71 196.8 15.5141 28.9188 0.0092 0.0100

9 22.5 27.1045 30.0194 0.0085 0.0082 73 202.5 15.8701 28.8032 0.0092 0.0102
11 28.1 26.7954 30.1145 0.0086 0.0093 75 208.1 16.2538 28.7082 0.0092 0.0106
13 33.8 26.3783 30.2639 0.0085 0.0094 77 213.8 16.6661 28.6421 0.0093 0.0108
15 394 25.9226 30.4012 0.0081 0.0092 79 219.4 17.0868 28.5946 0.0088 0.0107
17 45.0 25.3945 30.5528 0.0078 0.0090 81 225.0 17.5538 28.5630 0.0087 0.0104
19 50.6 24.8023 30.6676 0.0080 0.0093 83 230.6 18.0621 28.5541 0.0091 0.0106
21 56.2 24.1616 30.8266 0.0077 0.0089 85 236.2 18.5922 28.5533 0.0088 0.0107
23 61.8 23.4716 30.9453 0.0076 0.0089 87 241.8 19.1213 28.5372 0.0092 0.0111
25 67.5 22.7611 31.0297 0.0077 0.0093 89 247.5 19.6497 28.5219 0.0088 0.0106
27 73.1 22.0165 31.1184 0.0075 0.0090 91 253.1 20.2411 28.4766 0.0094 0.0111
29 78.8 21.1759 31.1580 0.0076 0.0092 93 258.8 20.8124 28.4394 0.0090 0.0109
31 84.4 20.3448 31.2244 0.0078 0.0090 95 264.4 21.4098 28.3871 0.0095 0.0114
33 90.0 19.4993 31.2982 0.0078 0.0090 97 270.0 21.9946 28.3620 0.0094 0.0112
35 95.6 18.6834 31.3621 0.0077 0.0089 99 275.6 22.6005 28.3599 0.0098 0.0113
37 101.2 17.8994 31.3576 0.0075 0.0091 101 281.2 23.1638 28.3595 0.0103 0.0117
39 106.8 17.1919 31.3016 0.0072 0.0091 103 286.8 23.6714 28.3370 0.0105 0.0019
41 112.5 16.6273 31.1913 0.0073 0.0091 105 292.5 24.1749 28.3546 0.0104 0.0121
43 118.1 16.1057 31.0711 0.0072 0.0090 107 298.1 24.6697 28.3807 0.0103 0.0116
45 123.8 15.6892 30.8984 0.0074 0.0092 109 303.8 25.1389 28.4285 0.0105 0.0113
47 129.4 15.3270 30.7228 0.0072 0.0091 111 309.4 25.5589 28.4873 0.0107 0.0118
49 135.0 14.0429 30.5432 0.0076 0.0089 113 315.0 25.9156 28.5345 0.0110 0.0115
51 140.6 14.8179 30.3442 0.0077 0.0093 115 320.6 26.3059 28.6166 0.0108 0.0115
53 146.2 14.6872 30.1673 0.0083 0.0094 117 326.2 26.6341 28.7213 0.0106 0.0111
55 151.8 14.5483 30.0030 0.0078 0.0092 119 331.8 26.9009 28.8259 0.0105 0.0107
s7 157.5 14.5038 29.8450 0.0085 0.0093 121 337.5 27.1502 28.9522 0.0104 0.0107
59 163.1 14.4773 29.6706 0.0085 0.0095 123 3431 27.3512 29.0926 0.0103 0.0103
61 168.8 14,5087 29.5047 0.0089 0.0100 125 348.8 27.4973 29.2111 0.0101 0.0101
63 174.4 14.6118 29.3525 0.0093 0.0130 127 354.4 27.5946 29.3563 0.0095 0.0099
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a fan-beam geometry,* the errors in Table I are an order of
magnitude smaller due primarily to the larger sample size of
the two-dimensional data set. In addition, the precision in
the centroid measurements, given in terms of the statistical
errors, is less than a millimeter; whereas, the measurement
accuracy is significantly larger since the sampling pixel size
of 6.4 mm is fairly coarse. Therefore, the precision given in
Table I should only be interpreted in terms of the outcome of
repeated measurements; that is, if the measurement is re-
peated, the result would be (barring any systematic errors)
within the same value + the quoted error at a confidence
level of 67%.

The initial estimates were chosen carefully to be as close to
the actual value as possible to avoid settling on any local
minimum that would give unrealistic solutions. The initial
values that were assigned to each of the geometrical param-
eters, ¢g, ¢z, D', D, X, ¥y, and z, are given in Table I for each
point source location. The coordinates (xg,y,, z,) of each
point source were initially set to zero. The projection of the
focal point and the center of rotation onto the detector is
usually near the center of the crystal, so values of ¢ =20
cm, ¢, = 20 cm were chosen as the initial estimate. The colli-
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mator was built to a designed specification for the focal
length of ~40 cm. Thus, a value of 45 cm was chosen as an
initial estimate for D’ in order to include the focus-to-colli-
mator distance plus the length of the collimator holes, the
gap between the collimator and crystal, and any potential
crystal penetration. The focus-to-center distance D was cho-
sen to be fixed at 25 cm, which is the designed focus-to-
collimator distance of 40 cm shown in Fig. 3, minus the dis-
tance of 15 cm, which was the distance the center of rotation
was placed from the face of the collimator.

After the initial solutions were set, the geometrical param-
eters were systematically and iteratively varied using the
Marquardt algorithm®*** to minimize the ¥ function in Eq.
(12). It was found useful to vary only certain of the param-
eters at first to increase their precision before varying others.
The results in Table II first varied x,, y,, and z, only, holding
the other geometrical parameters constant. The second pass
varied ¢; and ¢, only, the third pass varied D', and the last
pass allowed all parameters except for D to vary.

In general, the fitting technique most accurately deter-
mines the projected center of rotation coordinates (cesee).
Various initial solutions were tested and in all cases, cg con-

TABLE II. Estimates for the geometrical parameters were obtained for each point source placed at four separate locations shown in Fig. 3. In each pass, those
variables indicated with an asterisk are held constant and the other variables are allowed to vary using the Marquardt algorithm to give a best estimate of the
parameters. The errors for each estimate are given in parentheses and all values are in units of cm.

Pass [ C: D’ D Xo Yo Zo Xz
Initial
value 20 20 45 25 0 0 0
POINT SOURCE LOCATION 1
1 20* 20* 45% 25% —0.3013 3.5905 —2.5360 2046721
(£0.0005)  (+00005) (4 0.0004)
2 20.9640 20.0031 45+ 25% —0.3013% 3.5905* — 2.5360* 164252
(+0.0007)  ( + 0.0008)
3 20.9640* 20.0031* 45.2967 25% —0.3013* 3.5905* — 2.5360* 160728
( + 0.0050)
4 21.0026 20.1737 45.0606 25+ —0.1686 3.6433 —~2.6232 87865
(£0.0007)  (+0.0008) (4 0.0041) (£0.0005)  (+0.0002)  (+0.0001)
POINT SOURCE LOCATION 2
1 20* 20* 45% 25+ 1.5858 — 3.5678 —1.7674 1897524
(£0.0005)  (+0.0006)  (+ 0.0004)
2 20.9792 20.0025 45* 25+ 1.5858% — 3.5678% —1.7674* 130225
( +£0.0007) (4 0.0007)
3 20.9792* 20.0025* 45.2153 25% 1.5858* — 3.5678% — 1.7674* 128761
( + 0.0057) )
4 21.0310 20.0166 41.9731 25% 1.5470 — 39119 — 1.8952 33645
(£0.0007)  (+0.0007) (4 0.0048) (+0.0006)  (+00003)  (+0.0002)
POINT SOURCE LOCATION 3
1 20* 20* 45% 25+ — 04952 —3.5910 5.2696 1629821
(+0.0006)  (+£0.0006)  ( + 0.0005)
2 20.9324 19.9962 45% 25% — 0.4952* — 3.5910* 5.2696* 148514
(4 0.0008) (4 0.0009)
3 20.9419* 19.9754% 45.1558 25+ — 0.4952% —3.5910* 5.2696* 146594
{ 4+ 0.0036)
4 20.9701 21.7712 35.9526 25% —0.7844 — 4.5040 5.3371 68370
(£0.0014)  (+£0.0016)  ( + 0.0060) (+£0.0013)  (+0.0013)  (+0.0011)
POINT SOURCE LOCATION 4
1 20* 20% 45* 25+ — 3.5726 3.2898 5.1935 1293960
(£00006)  (+0.0006) (- 0.0005)
2 20.9377 19.9972 45+ 25+ — 3.5726* 3.2898+ 5.1935* 146176
(+0.0009) (4 0.0010)
3 20.9377* 19.9972* 45.0829 25% — 3.5726* 3.2898* 5.1935% 145657
( 4+ 0.0052)
4 20.9896 21.4699 37.3677 25% — 4.1566 4.0719 5.2397 60915
(+00009)  (+00010) (4 0.0027) (+£0.0006)  (+£0.0003) (- 0.0002)

Medical Physics, Vol. 17, No. 2, Mar/Apr 1990



270 Gullberg et al.: Cone beam tomography

verged very closely to 21 cm. The estimates for the centroid
coordinate ¢, seemed to vary with the position of the point
source more than that of ¢g. In the four studies, the largest
variations in the estimates were obtained for the focal length
D’ which ranged between 45.06 and 35.95 cm. We also found
if D was a variable, that for different initial values assigned to
the parameters, the algorithm converged to different esti-
mates for D and the point source coordinates (xg,y,, Z,);
whereas, the other parameters would always converge to
nearly the same solution. This is not too surprising consider-
ing that the point source coordinates and the distance from
the focal point to the center of rotation are highly correlated.
Therefore, D was chosen to be fixed at 25 cm for all the
results presented in Table II.

Anindependent study was performed where point sources
were positioned at different locations away from the crystal
and at different locations parallel to the plane of the collima-
tor. The focal length that was calculated for different posi-
tions parallel to the face of the collimator correlated well
with the estimated values using our fitting technique, and
indicated that the focal length did indeed vary across the face
of the collimator. The cause of the focal length variation is
most likely the result of deviations in the collimator hole
angulation from the designed specifications and is not unlike
experiences with parallel-hole collimators.**-’

An example of the fit (p,7) for the calculated centroid
coordinates p and 7 as a function of angle is shown in Fig. 5
for the data obtained from point source location 3. The dif-
ferences between the measured data and the fit as a function
of angle for each of the four studies is shown in Fig. 6. Visual-
ly, one can see that the best fit is obtained in Fig. 6(b) for
point source location 2, and this is substantiated by its lowest
x° value in Table II. In all the studies, the best fits seem to be
obtained for the centroid coordinate p perpendicular to the
axis of rotation.

The large y* values in Table II are due to the division in
Eq. (12) of the square of relatively large differences between
the fit and the measured data (absolute value <0.4 cm) by
very small measurement errors ( <0.0001 cm). These rela-
tively large differences appear to be due to systematic errors
in the data. If one looks closely at the measured curves in Fig.
5, the plot for the measured coordinate 7 does not appear to
be smoothly varying but has small bends in the curve. From
the different estimated focal lengths obtained for different
point source locations, one would infer that these systematic
errors are due to variations in the focal length caused by
perturbations in the hole angulation across the collimator.

Previous work with parallel collimators indicate that var-
iations in the coordinate 7 parallel to the axis of rotation is a
good measure of the variation in the angulation of the colli-
mator holes.>” If we consider the projection data that are
obtained as the camera is rotated 360° around the point
source, during the rotation, rays from the source pass
through a series of holes across the face of the collimator.
For parallel-hole collimators, the series of holes are orthogo-
nal to the axis of rotation; thus, the plot of the calculated
centroid 7 should be a straight horizontal line. In contrast,
for converging collimators the series of holes are not orthog-
onal to the axis of rotation and the plot should be a slowly
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FiG. 5. Plots of the estimated (p,7) and the measured (p,7) centroid coordi-
nates for the data in Table I (point source location 3).

varying curve. Yisual interpretation of the curved path is
useful to show systematic deviations which are not random,
thereby, providing a good indication of the deviations in the
hole angulation for those holes traversed by the point source
during the rotation.

V. DISCUSSION AND CONCLUSION

We have presented a method that is able to measure the
parameters of a cone-beam detector system using a nonlinear
estimation technique that estimates the geometrical param-
eters from data which are projection measurements of a
point source. The method involves calculating over 360° the
coordinates of the centroids of the projected point source
and then using the Marquardt algorithm to fit the measured
centroid coordinates to analytical expressions of the coordi-
nates in terms of the geometrical parameters. The method
was also found to be useful in evaluating the accuracy of the
collimator construction by measuring variations in the esti-
mated focal length as point sources are placed at different
positions in the field of view. The focal length variations are
due to deviations in the constructed collimator hole angula-
tion from the designed angulation which is intended to focus
each hole to a common focal point.

Collimator manufacturers have indicated that the large
focal length variations observed in the collimator which we
tested is not too surprising for collimators manufactured
several years ago. They claim that the manufacturing pro-
cess has improved significantly and that the new collimators
are constructed with a focal length variation guaranteed to
be within a tolerance of 2 mm. However, the variability in
the collimator hole angulation and the center of rotation
across the crystal should be measured and should preclude
acceptance of any newly manufactured collimator to be used
by a SPECT system as it has recently been recommended for
parallel-hole collimators.*”*® Since cone-beam tomography
is used to estimate geometrical parameters, the estimated
focal length is an average for a series of collimator holes;
thus, it is also recommended that the focal lengths be verified
directly using a device such as a three-dimensional rectangu-
lar tray holder that is able to support a series of point sources
at several distances away from the collimator.3¢*’



271 Gullberg et al.: Cone beam tomography

3 A e

o \V\Mr/\

o e i g e s e
(a)

S AN

a \\,r-r

o J\\‘

\

'\/M .\«M_ 7

DIFFERENCE - CM
0 010

-04 -03 —?.2 -01

5

i I i 1 It 1 J
920 WGLI 1’830 R&g 270 ;16 360

{c}

271

-03 -02 -01

-04

1 1 i L 1 1 —
o 45 20 ﬂﬁcm 188!:03:21?3 270 318 3s0

(b)

-04 -03 —?2 -0.1

5

‘}é?cm 158101!&3 #76 316 380
(d)

FIG. 6. Plots of the difference between the estimated and measured centroid coordinates for the data from the point source (a) at location 1, (b) at location 2,

(c) at location 3, and (d) at location 4.in Fig. 3.

The estimation technique can provide several parameters;
but, estimates for the focal length D’ and the projection of the
center of rotation onto the detector (cgsc.) completely
specifies the reconstruction geometry and is all that is re-
quired to reconstruct clinical cone-beam data. In filtered
backprojection®? and iterative reconstruction algorithms,?’
the estimated focal length is expressed in units of the sam-
pling bin width at the detector; this is equivalent to trans-
forming the reconstruction problem into one where the de-
tector is located at the center of rotation.*® The choice of the
pixel width (in units of projection bin width) of the recon-
structed image is arbitrary and is set by the user depending
upon the size of the desired reconstructed pixel (larger pixels
less counts per pixel, smaller pixels more counts per pixel).
The coordinates for (cesCs)s also expressed in units of pro-
jection bin width, are used to position the projection array
relative to the center of rotation of the reconstructed coordi-
nate system, so that at any desired projection angle the image
pixels can be correctly related to the projection bin into
which they project.

Knowledge of the distance D between the focal point and
the center of rotation becomes important when the recon-
structed pixel size is required for quantitation purposes. In
our technique, D was fixed because we found that D was
highly correlated with the point source coordinates and ac-
curate values for D where difficult to obtain. In a quantita-
tive clinical study, it may be advisable to determine the dis-
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tance D using more accurate methods such as using a laser
stereotaxic system. It can be shown that specifying D is
equivalent to imposing a scaling of the pixel width and would
either minify or magnify the image. In this way, the recon-
struction problem is somewhat arbitrary as to where one
wants to choose the focus-to-center distance D. It also im-
plies that the important thing in relating the reconstructed
pixels to the corresponding sample bin is the angle of arc
subtended by a sampling bin. Therefore, incorrectly specify-
ing D does not result in reconstruction artifacts, but is im-
portant in obtaining quantitative measurements.

The estimated parameters obtained by tomography are an
average for a series of collimator holes. Reconstruction arti-
facts can result if there are large variations in the actual focal
length and center of rotation across the camera field of view.
In our previous experience with fan-beam collimators, the
focal length can vary significantly (more than 10 cm) and
reconstruction artifacts are not observed.>> However, one
should keep in mind that those observations were made
based upon results obtained using a long focal length colli-
mator (72 cm) and the tolerance will more likely be less for
shorter focal lengths. However, the critical parameter is c,.
Variations in this can cause significant errors in the recon-
structed image as it does for parallel and fan-beam geome-
tries. 303

The method presented in this paper should be useful to
evaluate initially the quality of the converging collimator, in
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particular, the uniformity of the focal length. It is necessary
to only determine the collimator focal length once since the
focal length is fixed by the collimator and remains un-
changed. However, the estimation technique should periodi-
cally be used to recalculate, in case of any electronic changes,
the coordinates of the projection of the center of rotation,
just as is done presently with parallel geometry.*® The toler-
ances for these parameters still need to be determined in
terms of the necessary requirements for good image quality.
The question of how correlations between parameters effect
the estimation results, especially with the potential of includ-
ing other parameters such as center of rotation shifts, need to
be investigated for the potential of using the estimation tech-
nique for a variety of quality control testing procedures.
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