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This paper deals with computed imaging techniques tor ultrasonic transmission
tomography. Cross-sectional images of the refractive index in soft biological tissues
can be obteined by measuring the arrival-time of signhals that propagate between
two transducers. An alternative method to obtain images is to measure the
attenuation in the path between the pair of transducers. In practice, images of the
refractive index exhibit a betlter quality than images of the attenuation coefTicient.
In this report we have shown through computer simulation that some of the degra-
dations in images of the attenuation coeflicient are due to the existence of multiple
rays that link Lhe transmilling and Lhe receiving transducers. This condition is
known as multipath. We have demonstrated two methods to reduce the influence of
multipath on reconstructions of the attenuation coefTicient. The first metlhod
employs homomorphic signal processing to estimate the attenuation coeflicient for
one of the linking rays. The second method applies median filtering in the projec-
Lion space to remove the artifacts caused by multipath. The correction techniques
were tested on data obtained by scanning tissue equivalent phantoms. Results
obtained indicate that the correction methods significantly improve the quality of
images of the attenuation coeflicient.

Key words: Homomorphic flltering; median filtering; multipath artifacts; tomogra-
phy; ultrasound.

1. INTRODUCTION

The introduction of X-ray computed tomography (CT) in 1872 brought forth a
revolution in diagnostic medical imaging [1]. This powerful technique cannot be
applied without first considering the possible health hazards of X-rays. For some
medical applications, such as mass screening of the female breast, X-ray imaging is
precluded as a viable diagnostic modality because it is invasive {2]. The need exists
for techniques similar to CT, but with other forms of energy that are nol invasive,

Ultrasound is an attractive substitute for X-rays because, at diagnostic power
levels. it is thought to be harmiess. Ultrasound offers the possibility for the charac-
terization of the morphological state of a biological specimen by generating maps of
acoustic parameters of the object. The two parameters of greatest interest are the

K attenuation coefTicient and Lhe refractive index.

The first attenuation images were reported by Greenleaf et al. [3]in 1974. The
parameter they used for tomographic reconstructions was based on the total
cnergy in the received waveform. This parameter is the direct analogy to the
attenuation coefficient used in CT. The measurement in the ultrasound case is sub-
ject to error because the loss due to the specular reflection coefficient is ignored.
As a result, the images produced by this technique are, at best, only qualitatively
correct and often may be corrupted by artifacts.
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Techniques to find quantitative estimates of the attenuation coeflicient were
shown by Kak and Dines [4]. These were derived as a consequence of the frequency
dopendence of the attenuation coeflicient. Reconstructions based on these.
methods were shown elsewhere by Dines and Kak [5]. Quantitative results were
reported by Klepper et al. [6]. .

The first quantitative refractive index ultrasonic tomograms were reported by
Greenleaf ot al. (7] in 1975. The parameter used for their technique was the transit
time of the ultrasound wavelform that travels (rom the transmitting transducer to
the receiving transducer. This method is known as time-of-flight tomography.
Tomograms made from the transit time are linearly related to the refractive index
of the object. Carson et al. (B], Jakowatz and Kak (9], and Grover and Sharp {10]
have shown similar results,

Images made of the refractive index using the time-of-flight method exhibit a
better quality than those made of the attenuation coefficient. The estimate of the
attenuation coeflicient is oblained from the power spectrum of the received pulse.
Dirtes and Kak (11]. Lizzi and Coleman [12], Kue et al. [13)], and others have recog-
nized that the power spectrum is degraded due to the presence of muiltipath in the
received waveform. The result of this degradation is to cause errors in the meas-
urement of the attenuation coefTicient. It should be noted that the same multipath
that causes the error in the attenuation estimate only barely affects the Lime-of-
Night estimate.

This paper will show two methods to reduce the effects of multipath in recon-
structions based on the altenuation coeflicient. The first model assumes that mul-
tipath causes a multiplicalive noise called scalloping to appear in the recoived
power spectrum. Techniques based on homomorphic signal processing [14] will be
applied to correct for the notse. The second model assumes that multipath causes
samples in the projections. corresponding to paths near boundaries within Lhe
object, to contain impulse-like noise. The second correction method is an applica-
tion of the non-linear technique of median fitering [15] which [orces the projections

to be smooth.

Section 2 will present a review of the estimation techniques used in time-of-
flight and attenuation tomography. A discussion of multipath artifacts will be
presented in Section 3. The correction techniques will be developed in Section 4.
Seclion 5§ contains the resulls of an experimental study to check the effectiveness
of the correction methods,

2. PARAMETER ESTIMATION

A tomogram is a map of one of the characteristics of an object on a plane. In
ultrasound tomography, the characteristics of interest are the refractive index and
the ultrasonic attenuation coeflicient o! the object. Consider a two-dimensional
function that represents the characteristic of the object in a plane. Assume for Lhe
moment that integrals of this function along straight lines can be obtained. If these
integrals are known for all paths through the function then they can be inverted to
recover the original function. The reconstruction algorithm using these line
integrals is based on the well known theory of projections [16).

Tomography using any kind of energy can be achieved if the straight-line
integrals can be determined. The estimation of line integrals for ultrasonic tomog-
raphy can be achieved only if many assumptions, dealing with the interaction of
sound with an object, are made. Section 2.1 presents the assumptions necessary so
that the interaction of sound with an object satisfies the requirements of the recon-
struction algorithm. Based on the model shown in 2.1, Sections 2.2 and 2.3 present
methods Lo estimate line-intcgrals of acoustic parameters.

2.1 Model for sound interaction with an object

Consider the object slice depicted in figure 1. The medium outside the slice is
water. The slice is Interrogated via an incident fleld generated by the transmitting
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Fig. 1 Transducer configuration for the estimation of projection samples.

transducer. The forward propagated field is measured by the receiving transducer
The straight line connectling the centers of the two transducers is called the line-

of-sight path.

The final result of the estimation process is a line integral along the line-of-
sight path. Ultrasound should also travel along this path. This criterion is partially
satisfled I the wavelength of the incident fleld is much less than the correlation
length of the object. This situation is the acoustic analogy to geometrical optics
where the energy is assumed to propagate along rays. The path of each ray is
governed by the laws of refraction. Diffraction effects will be present if the ray
model does not hold. These effects are beyond the scope of this paper and hence
will not be considered.

The desired path of propagation for the ultrasound is the line-of-sight path
between the two transducers. Refraction will cause the ray to deviate from this
path. Ray bending will not occur il the boundaries within the object are perpendic-
ular to the direction of propagation. Consider a cylinder of a few wavelengths In
diameter whose central axis is the line-of-sight path. The assumption of perpendic-
ular incidence implies that the cylinder contains a stack of homogeneous layers.
The faces of the layers are all parallel to each other and perpendicular to the cen-

tral axis.

The transmitter can emit a number of rays all of which can be incident on the
object. It is possibie for rays to travel along different paths within the object and
still reach the receiver. This condition is known as muiltipath. Muitipath can be
avoided if the cylinder described above has its diameter extended so that the
cylinder always contains the incident beam. The ray traveling along the line-of-
sight path will be the only ray to reach the receiver.

Assume that the model just presented is correct for the object shown in figure
1. The transmitting transducer is excited with the waveform yi(t). The correspond-
ing waveform at the output of the receiver is y(t). It has been shown that with the
assumptions of both linear and geometric propagation that the Fourier transforms
of y;(t.; and y(t), Yi(f) and Y(f), respectively, can be related through the foilowing
equation [4)
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Y(1) = KY(f) H(f) He(f)exp ‘ (1)

H
-{ (o) + jB(u))du

where K is the specular transmission coeflicient. H,(!) and H.(f) are the transfer
functions of the transmitting and receiving transducers, respectively. The terms «a
and # are the attenuation and phase coefficients, respectively. The variable u is a
distance measurce along the line-of-sight path between the two transducers. u=0is
at the face of the transmitter and u=u, is at the face of the receiver.

Implicit in the derivation of (1) is the assumption that the phase of the
received fleld is constant across the face of the receiving transducer. Phase cancel-
lation errors will occur if the phase is not constant when the fleld is integrated on
the surface of the receiver. The errors that result from phase cancellation are basi-
cally sampling theorem problems. We make the assumption that our sampling
intervals are small enough so that phase cancellation can be ignored and that any
remaining artifacts are secondary.

Consider the signal received when the object is removed and replaced with
water. This signal is called Lhe water path signal and is denoted by y,(t). Its
Fourier transform, Y,({), is given by

’ (2)

]
Yu(f) = Yo(f) Hi(f) He(t) EXP[‘{[ﬂw(f) +JBw(t) Jdp
where the subscript 'w' indicates properties of water.

Now substitute (2), into (1) to obtain a description of the received signal [n
terms of the water path signal. The result is

(3)

Ky
Y(f) = KYu(0) exn[—_{ Ha(u)—aw(f)] + j[B(u.0)=Bu(l)]idu

Over the frequency range used in diagnostic imaging, soft tissue has been
shown to be dispersionless [17-18). The phase coeflicients §(u.f) and Bu(f) reduce to

Blul) = ;2(—;5‘)— (4)
o) = -27""1- . (5)

where v and v, are the phase velocities of sound within the object and water,
respectively.

Using (4) and (5), (3) can be reduced to

L)
Y(r) = KY.(f)exp[-,of [a(u.r) = a,(f)]du| exp(~j2niT) . (6)
where
4
T2 o= (n(u)~1)du , (7)
w0
and n(u) is the refractive index defined by
nw) = 5oy - (®)
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] For most biological tissues the attenuation coeflicient can be modeled as [19-
21

a(u.t) = ag(u)r® (9

where a, is called the slope of the attenuation coeflicient. Also assume that the
attenuation due to water is negligible. Eq. (8) reduces to

B
Y(1) = KYu(t)exp|- [ag(u)"Wdu| exp(~jentr) . (10)
0

Now assume that the spatial dependence of ¥ can be ignored

L)
jo' o () Wdu =y, (11)
where
Hy
¥ = _[ a,(u)du . (12)

The final result is that a simple transfer function relates Y(f) to Y. ()
H(f) = Kexp(~y”) exp(—j2niT) . (13)

The integrals describing T (Eq. (7)) and ¥ (Eq. (12)) represent the line
integrals required by the reconstruction algorithm. Thus, it * and ¥ can be
cstimated from the transfer function given in (13), then tomographic reconstruc-
tions can be made for the refractive index and for the slope of the attenuation
coeflicient. Seclion 2.2 describes techniques to estimate r and Section 2.3 presents
an estimator of ¥.

2.2 Estimation of 7
Assume that Y, (f) is narrow band with respect to H(f). Then (13) reduces to

y(t) = K yult-7) , (14)
where
K' = Kexp(-y!') (15)

and f' is the center frequency of Yu(f). From (14) it can be seen that the received
signal is just a scaled and time shifted version of the water path signal. The term 7
i1s the time relative to the water path signal that it takes for a signal to propagate
from the transmitter to the receiver. T can then be considered a time-of-flight
mecasure for the signal. Because T i3 linearly related to the integral of the refrac-
tive index, tomograms constructed via the direct estimation of it are called time-
of-flight tomograms.

The problem of estimating r is analogous to the radar or sonar problem of
estimating the range. The optimum estimator in the presence of additive white
Gaussian noise is a correlation detector, if the maximum likelihood criterion is
applied [22]. However, it is extremely difficult to implement this estimator. Many
authors have suggested using a less optimal, but more easily implemented, detec-
tion scheme to measure 7 [7-10). An approximate estimate of T is found by deter-
mining the time at which the absolute value of the received signal crosses a thres-
hold set just above the level of the background noise

min t |jy)1>ey » (16)

where £y is the threshold value. This method has the advantage of a simple imple-
mentation in hardware. A block diagram of the system to estimate T is shown In
figure 2.
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Fig. 2 Hardware implementation of time-of-fAight tomography.

One source of error in the arrival-time estimate is caused by the term given by
K in (14). The effect of this term is to introduce a variable gain into the signal
path. Because the threshold value is fixed, the arrival-time estimate will be a func-
tion of K. This effect is equivalent to the case with a fixed gain and a variable thres-
hold value. This can be explained with the help of figure 3. The top frame in figure
3 deplcts a typical received signal. The absolute value of the signal is presented In
the middie frame. The threshold level is the left scale in this frame. Two thresholds
are indicated by the horizontal dashed lines. The arrival time as a function of the
threshold is shown in the bottom frame.

The phenomenon called time-walk is the change in the measured arrival time
caused by the finite rise time of the lobes of |y(t)]. This is seen by the linear
change in the arrival time as the threshold value intercepts different parts of a
lobe. When the threshold reaches the first dashed line, the measured arrival time
will exhibit a jump called a time-hop. Time-hops can be eliminated by determining
the arrival time of the envelope of the received signal. Time-walks can be removed
it an adaptive threshold (s used (23]

2.3 Estimation of ¥

The integral of the slope of the attenuation coefficient, ¥, can be estimated by
considering the power spectrum of the received signal. From (13) it is given by

IY(1) |2 = KB |Yu(l) [Pexp(-2y0) . (17)

The method for estimating the integrated attenuation coeflicient is based on a
specific model for the power spectrum of the received signal. Dines and Kak [5] and
Kuc et al. [13] observed that if the power spectrum of the water path signal can be
modeled by a Gaussian {unction, then the received waveform will also be Gaussian.
The difference in the center frequencies between the water path power spectrum
and the received power spectrum is linearly related to the integral of the attenua-
tion coeflicient.

Assume that the power spectrum of the water path signal is given by
f -1,
| Yu ()8 = A'exp[--zl—(-—a-%’] , =0, (18)

where A', fg, and ¢ are parameters that characterize the Gaussian model. Now sub-
stitute (18) into (17) to determine the power spectrum of the received signal

IY(f)l”:Cexp{—-%—(t;h =] . 120, (19)
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Fig. 3 Time-walk and time-hop in arrival-time estimates. (a) Received signal. (b)
Absolute value of (a). (¢) Arrival-time as a tunction ot the threshold value.

where it has been assumed that vy is unity, C is a constant, and

fo -1,
Ay

(20)

It can be seen from Eq. (20) that ¥ is linearly related to the shift in the center fre-
quency from that of the water path signal to that of the received signal. Hence the

name frequency shift method is given to this technique.
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MULTIPATH ARTIFACT CORRECTIONS

An estimate of the center frequency of a Gaussian function can be found by
determining its mean [11]. The mean can be determined from the normalized first
moment. The normalized first moment of the received power spectrum, 7y, is

defined by

ny = %‘— : (21)
0
where
M= [r]Y(f)|%dt | 1=01 . (22)
0

Mg and M, are called the zero and first moments, respectively. ¥ can be determined
by substituting ny for t; in (20).

3. MULTIPATH ARTIFACTS

In Section 2 estimators for the integrated refractive index and for the
Integrated slope of the attenuation coefficient were derived. Two assumptions were
made in order to derive these estimators. In this section we show that it is impossi-
ble for an object to completely satisfy one of the assumptions. Multipath arises
because Lhis assumption is not met. Curved rays travel between the two transduc-
ers due to refraction. In Section 3.1 a model for the propagation of sound will be
presented that incorporates multipath and refraction eflects. Using this medel,
Section 3.2 presents a discussion of muitipath artifacts.

3.1 Multipath model for sound interaction

The first assumption used in Section 2 was that the wavelength of the incident
fleld must be much less than the correlation length of the object. The acoustic
energy can be considered to propagate along rays if this assumption Is satisfied.
The paths of the rays are governed by the laws of refraction. Without further
assumptions, there is no guarantee that only one ray will reach the receiver and
that this single ray travels along the line-of-sight path.

The transmitting transducer emits a number of rays which are incident on the
object. It is possible for more than one ray to reach the receiver. In Section 2 it
wag assumed that all the boundaries across the beam width are perpendicular to
the direction of propagation. With this assumption only the ray traveling along the
line-of-sight path will reach the receiver.

It is obvious that there is no way for the boundaries to be perpendicular to the
direction of propagation across the beam width for every possible line-of-sight path
within an object. The implication of this assumption not being satisfled is that mul-
tiple signals can reach the recciver. The paths that the individual signals travel are
not straight because of refraction,

We now reconsider the model for the propagation of sound that was presented
in the previous section. Assume that multipath is not present in the received
wavelorms. From Section 2, the received signal, y(t). is given by

y(t) = yu(t) *h(t) , : (23)
where ya(t) is the water path signal, * indicates convolution, and the filter h(t) is
given by

h(t) = ]Kexp(—vlH"-jzm['r-t])df . (24)

The terms T and ¥ are related to the line integrals (along the line-of-sight path
between the transmitter and the receiver) of the refractive index and the attenua-
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tion coeflicient, respectively. The term K is the specular transmission coeflicient.

Now assume that multipath is present. The received signal, ym(t), will consist
of M components. Each component corresponds to a signal traveling along a
different path. Eq. (23) can be extended to include multipath as follows

V() =l§;y.(t)~h.(t) . (25)

where the Fourier transform of hy(t), Hi(f), is given by
H(f) = Kiexp(~y; 1|7 - j2ntr) . (28)

The terms ¥; and 7, are determined by integrating the corresponding object charac-
teristic along the i'th path. Refraction is implicitly included because the ray paths
are not necessarily straight.

3.2 Effect of multipath on acoustic parameter estimates

First consider the estimation of the relative arrival time 7. T is estimated by
finding the first instance of time at which the absolute value of y(t) crosses a thres-
hold. The arrival time can be estimated by substituting the multipath corrupted
received signal given by (25) into (186)

min t.| X . (27)
',?,’-(" *hit)|>ey :

It is easy to see from (27) that in most situations the output of the estimator will be
the minimum value of 7,, The attenuation terms K, and ¥, corresponding to the
fastest signal might cause the maximum amplitude of this path to be less than ¢y,
In this case the output of the estimator will be the next smallest value of 7;. Thus,
one sees that the result of time-of-flight estimator in the presence of multipath is
always a valid estimate for the arrival time of one of the components of the received
signal. Of course the arrival time estimate can be degraded by time-walk and
time-hop as described in Section 2.

Now consider the estimation of the attenuation coefficient ¥ With the fre-
quency shift method the attenuation estimate is made from the power spectrum of
the received signal. The power spectrum of the multipath version of y(t) can be
obtained by taking the square of the magnitude of the Fourier transform of (25)

1Y(n) |t = IY..(f)l‘l#'K.exp(-%Ill"-Jzﬂf‘n)I‘ . (28)

Assume that the attenuation coefficient of the I'th path is desired. The power spec-
trum of the signal corresponding to this path can be determined by rearranging the
right-hand side of (28)

[Y(DI2 = 1Y,(0)12S(1) (29)

where the multiplicative term S(f) is called the scallop function. The scalliop func-
tion is given by

S(f) = 1'2"3 ReeXB(~(¥y = It17 = 2t =) | (30)
=t

ItK>» K and ¥, <<y, t £, then
YD1 Y1) . (31)

Thus, when one of the received signals dominates the others, the power spectrum of
the composite signal will be approximately the power spectrum corresponding to
the strongest path. A correct attenuation estimate can be found for this path.

It one of the received signals does not dominate the others then it is obvious
from (29) that the estimate of the attenuation coefficient will be a complicated
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¢
Fig. 4 Object used to study multipath artifacts.

function of all the K;, ¥;, and 7;. The estimate will not necessarily be equal to any
one of the y;.

From this preliminary discussion, it seems that muiltipath will eflect attenua-
tion tomography more than time-of-flight tomography. This observation is con-
sistent with observations in the literature [11-13].

We now consider an example in which the effects of multipath on refractive
index measurements and on integrated attenuation coeflicient estimates are com-
pared. The comparison is done by evaluating the propagation of ultrasound through
the triangular wedge depicted in figure 4. The object shape and the transducer
positions relative to the object were chosen so that received signals with varying
amounts of multipath can be generated. The assumption of the object being invari-
ant in the direction perpendicular to the scan plane has been violated on purpose in
order to introduce a well defined source of muitipath errors.

The wedge is assumed to be A homogeneous piece of tissue equivalent material
immersed in water. The object .is characterized by a refractive index np and an
attenuation coeflicient a(f) given by

a(f) = a,lt] . (32)

The two transducers are translated along lines parallel to the ¢ axis. The
centers of the transducer faces are in the (¢.¢) plane. Thus the line-of-sight path
between the two transducer centers is also in the (¢,¢) plane. Let the ¢ intercept of
the line-of-sight path denote the position of the transducer pair. In this example it
will be assumed that half the transmitted energy goes through the water and the
other half through the wedge.

Consider positions of the transducers for 0<£<¢,. It is assumed that the out-
put of the receiving transducer, y(t), is given by the sum of two components

y(t) = yu(t) + yo(t) . (33)
where y,(t) is the water path signal and y,(t) is the signal that arises from the path
through the object.

In Section 2 it was shown that y,(t) can be written as
Yo(t) = yw(t) *h(t) . (34)
where * indicates convolution, and the Fourier transform of h(t), H(f), is given by
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Fig. 6 Arrival time versus transducer position for the object shown in figure 4.
Sound travels siower in the object than in Lhe surrounding water. Long
dashed line is the Ideal arrival-time for the wedge path. Short dashed line
is the ideal arrival-time for the water path.

H(l) = exp(~y|t] ~j2riT) . (35)
The term ¥y is the integrated attenuation coeflicient given by
w = a'-e—t'— . (86)
&1

The term T is the arrival time relative to the water path signal. The arrival time is
given by

where v, is the velocity of sound in water.

(37)

Assume that the water path signal is a Gaussian pulse with a center frequency
of fo

t—-t,
0y )

L .
yu(t) = (2r) 'a;"exp[-g(

where o, is the standard deviation of the envelope. The arrival time, t,, is assumed
to be large enough so that y,(t)~0 for t <0. This insures that y,(t) is causal.

’}cos 2rfo(t-t,) , (38)

The Fourier transform of y,(t), Y,(f), is given by [24]
Yo(t) = %exp[-gzmn)*( 1] -0 —mm] : (39)

where it has been assumed that f; is large enough so that the tails of the replicas of
the spectrum that cross the frequency origin can be ignored.

The Fourier transtorm of y,(t), Y,(f), can be determined by substituting (35)
and (39) into the Fourier transform of (34)
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Yoll) = g—exp[;—(zﬂm)‘[(lfl-h)z-jan(ﬂ Wl . (40)
where
= (41)

fo- (Z"Ut)a
c= exp[— %(mra,,)'(f&-f,’)] . | (42)

The received signal, y(t). can be found by substituting (38) and the inverse Fourier
transform of (40) into (33)

L -
y(t) = (2m) 'ac'exp[-;—<‘ by

O

] cos 2mfo(t ~t;)

_L ——— (43)
+ c(2n) 20"‘exp[—é—(t—-£——t-'—)2]cos2nt,(t--r—t.,) .
t

3.2.1 Effect of muitipath on the time-of-flight estimate

The arrival time is determined by substituting (43) into (18). There are two
distinct cases for the arrival time. One case is when the speed of sound in the water
is faster than in the wedge. The other case is when the speed of sound is faster in
the wedge than in the surrounding water.

Consider first the case when the object is slower than the water. The object
being slower implies that n,>1 and hence 7> 0. Thus the signal traveling through
the wedge will always arrive at a time later than that of the water path signal. The
water path signal never gets attenuated in this model. Thus, the arrival time esti-
mate will always be a measurement of the arrival time of the water path signal.
Some degradations in the arrival time occur for small values of 7. This is becausc
the initial portion of the object path signal can interfere with the water path signal
where the threshold would be crossed if the object path was not present. This effect
can be seen in figure 5 where the arrival time versus £ is plotted. The deviation
from the correct arrival time for small ¢ is due to the interaction of the two com-
ponents of y(t).

Now consider the opposite situation in which sound travels faster in the object
than in the water. In this case T is negative and hence the signal traveling through
the object arrives before the water path signal. Thus the arrival time estimate will
be made on the object path signal. This wiil be true if the maximum value of the
object signal is greater then the threshold value. The object path signal is
attenuated as the transducers are translated from ¢ =0 to ¢ = ¢,. Thus, it is possible
for the maximum value of y,(t) to fall below the value of ;. When this happens, the
arrival time estimate will be made from the water path signal. This effect is seen in
figure 8 where the arrival time is plotted as a function of ¢. The threshold value &
13 seb so that half-way through the traverse the maximum value of y,(t) is less than
£y This causes the large discontinuity in the arrival time. This is known as a time-
hop due to multipath. The other deviations from the correct arrival time for the
object path are due to the time-hop and time-walk as described in Section 2.

From the previous two examples it can be seen that the arrival time estimate
is a valid estimate for one of the two paths for all values of £. This will now be con-
trasted to the attenuation estimate.

3.2.2 Effect of multipath on the attenuation estimate

The attenuation coeflicient will be estimated using the frequency shift method.
The power spectrum of the received signal, |Y(f) {2, can be tound by first finding the
square of the magnitude of the Fourier transform of (43)
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Fig. 8 Arrival time versus transducer position for the object shown in figure 4.
Sound travels faster in the object than in the surrounding water. Long
dashed line is the ideal arrival-time for the wedge path. Short dashed line
is the ideal arrival-time for the water path,

Y| = :‘_exp[_é_( It =t z] . g:_exp[_% ] -1, )2J

) o 48)
+ Aexp[— %-( -I—f-ja;?-)"’]cos 2ntr
where
I= fo+ 1) (45)

]
- ¢ t8+18-2f
A= ?XP[TG'_—] . (46)

Now substitute (44) into (21)

fo + c®, + 4Aexp [—- -;—-(erfa)'JGcos 2nrl - o®2nrsin2nrl)
(47)

fe =
cos 2rrl

1+c?+4A exp[— %—(27"0)’

The center frequency determined with (47) can be substituted for f; in (20) to
obtain the value of y that is estimated in the presence of multipath. Figure 7 shows
a plot of this estimate as the two transducers are translated across the extent of
the wedge. For small values of ¢ the estimate does not correspond to the attenua-
tion coefficient for either the water path or the object path. At these values of £
the relative delay, 7, is close to zero and hence the sinusoidal terms in (47) dom-
inate.

As ¢ increases, the object path is attenuated to the point where it is negligible
with respect to the water path signal. When this happens, the attenuation estimate
is made from only the water path which has zero attenuation in the path.
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Fig. 7 Attenuation coefficient estimate versus transducer position for the object
shown in figure 4. Long dashed line is the ideal attenuation coefTicient for
the wedge path. Short dashed line is the ideal attenuation coefficient for
the water path.

We saw previously that the time-of-flight estimator always yields a correct esti-
mate for either the water or the wedge path. The attenuation estimator at small
values of ¢ produces an estimate that is not consistent with either of the two paths.
It is obvious that the knowledge that an estimate is valid for one of the two paths is
better than not having a valid estimate of either of the paths. Thus, this example
has demonstrated that in the presence of multipath the attenuation estimator per-
forms worse than the time-of-flight estimator. This is consistent with the intuitive
results presented in the beginning of this section.

4. CORRECTIONS FOR MULTIPATH

In the previous section it was shown how the presence of multipath affects
refractive index and attenuation tomograms. Even though multipath aflects both
types of tomograms, it has a more severe effect on attenuation tomograms. In this
section we show methods to reduce the influence of multipath on attenuation tomo-
grams.

There are two ways to consider multipath within the context of this project.
The first method is to treat each received waveform as a separate identity. One
then tries to recover the uncorrupted power spectrum of one of the components
that comprise the received signal. Techniques to perform this task are presented
In Section 4.1.

With the second multipath correction method, one forms projections of the
object assuming that multipath is not present in the received waveforms. The pres-
ence of multipath causes irregularities in the projection space. The non-linear
filtering method presented in Section 4.2 is used to remove the inconsistencies.

4.1 Homomorphic filtering

The problem of multipath in transmission tomography is analogous to clutter
in radar or sonar [25], multiple reflections in ultrasonic eche tomography [26], and
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reverberations in seismic exploration {27]. In all of these situations the received
signal can be approximately modeled by the convolution of the desired signal with a
train of impulses. One needs to deconvolve the unknown impulse train to recover
the desired signal. Because the desired signal is also unknown, classical deconvolu-
tion techniques are not applicable. The generalized inverse flitering method called
homomorphic flltering has been used to perform the deconvolution operation In
these situations [28-31]. In Lhis section we demonstrate that homomorphic filtering
Is also applicable for the removal of muitipath artifacts in ultrasonic tomography.

What follows is a brief introduction to homomorphic signal processing. A more
complete description can be found eisewhere [14].

Consider two signals x,(t) and xp(t). Let G be an operator used to combine xy(t)
and xz(t). The output of the system is given by

y(t) = G{x;(t)ixg(t)] . (48)

It is desired to filter the output of the system, y(t), to remove one of the two com-
ponents. In general G is non-linear. Thus linear filtering is not directly applicable.

Consider the system transformation D, whose functional dependence is deter-
mined by G, that transforms the system to a linear space

D[G[x.(t):xz(t)]} = X (t) + xp(t) (49)
where

X(t) = D[x.(t)] (50)

Xe(t) = D[xa(t)] . (51)

Because functions of the components x,(t) and xz(t) appear as a sum, linear filter-
ing can now be used.

Apply the linear operator L to (49)

L[x*.m . x:m] = 5 + 7 (52)
where

Yi(t) = L{x‘,(t)} : ' . (53)

ya(t) = L{x’a(t)] . (54)

L can be designed to remove either x;(t) or xg(t).

Assume that the operator D possesses an inverse D~). Then D~! can be applied
to (52) to return to the original signal space

D"[y‘,(t) + yZ(t)} = G[y,(t):ya(t)] . (55)

D followed by L followed by D~! is called a homomorphic system. The advantage
of this type of system is that once D is determined, only a linear filtering problem
remains.

Consider a multiplicative system. The operator G is defined by

248



e 4.
Long
-1 line

(39)

(36)

ne is

(37)

Jdency

(38)

-umed

(39)

.~as of

3 (35)

MULTIPATH ARTIFACT CORRECTIONS

Gxi(t):x2(t)] = xy(t)xa(t) . (56)

It is clear that the system transformation D is the complex logarithm. The
corresponding inverse cperation, D”!, is the complex exponential. If the logarithm'
of (58) is taken, the following is obtained

log(x (t)xg(t)) = %y(t) + %(t) (57)
where

xi(t) = log(x,(t)) (58)

%2(t) = log(xa(t)) . (59)

Thus, if two functions are combined through the operation of multiplication, then
the compiex logarithm can be used to transform into a linear system. A linear filter
can be used to remove one of the multiplicative components.

We now show how the multiplicative model lends itself to the removal of mul-
tipath. Consider the following simplified model for multipath

xp(t) = x(t) *s(t) , (60)

where * indicates convolution, x.(t) is the received signal, x(t) is the desired signal,
and s(t) is the impulse train that incorporates multipath. The multipath term is
defined with

s(t) = 6(t) + Y ad(t—=by) . (61)
i
The summation in (61) is the contribution from muitipath. Assume that only the

power spectrum of the signal x(t) is desired. This power spectrum can be found by
first finding the square of the magnitude of the Fourier transform of (60)

IX0) 12 = (X(0)12]8(0){2 , (82)
where
S(f) = 1 + Y aexp(=j2nidb;) . (63)
i
When one compares (82) to (56), it ig seen that in the Fourier domain multipath can

be modeled as a multiplicative system. The system transformation D is accom-
plished by taking the logarithm of (62)

X() = Xtt) + Sty . (64)
where

X:(1) = log(IX:(1)|%) (85)

XU1) = 1og(|X(0)1?) (68)

SUt) = log(|S(0)|?) . (67)

SUf) can be evaluated by substituting (83) into (87)
S = 1og(1t + Y aexp(~j2ntby) + T aexp(j2ntby)
7 ]

+ Z‘:zl:a,n,exp(-jzm[b. -b])) . (68)
This can be further simplified with the following Taylor series expansion
w _ ksl
log(1+x) = 2-—-%;——«" . Ixl<t . (69)
k=1

Now substitute (88) into (69) and also make the assumption that only one source of
multipath is present. This results in

Sty = 3 cxexp(j2ntkb,) | (70)

ks-=
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Fig. 8 Homomorphic system to recover a power spectrum.

where the cy's are constants.

Now take the Fourier transform of (64)
%(t) = x(t) + s(t) . (71)
The terms x,(t), x(t), and s‘(t)ﬁare called the power cepstra corresponding to x,(t),

x(t)). and s(t), respectively. s(t) can be found by taking the Fourler transform of
(70

S = 3 cud(t-kb,) . (72)

ks~w

The cepstrum corresponding to x(t), x}t). is an even function centered about
the time origin. Thus, if the duration of x(t) is less than |b,], then x(t) can be
recovered by low pass flitering in the cepstrum domain. The value of x{t) at t=0 can
not be recovered because one of the impulses given in (72) is also at this point. The
value of the cepstrum at this point is related to the frequency independent gain of
the system. The attenualion estimators exploit the frequency dependence of the
power spectrum. Thus there is no problem if the x’(O) term is not recovered.

The output of the low-pass filter can be inverse Fourter transformed and then
passed through an exponcntial operator. The output at this stage is the recovered
value of |X(f)|%. The complete system needed to recover this power spectrum ls
shown in figure 8.

]

©  jeeececcescccccscannan (eecumccns O, =  (eeeecescsn jreccecmcseseseese.-
' [ . '
(t) 1] Fourier Il i L Fourier || ‘[ TowPoss]: |[Tnverse
Y ¢ [Transform ! i %0 Transform| 1% +'|__Filter ' 773.\‘.'}3?-.1. Exp
R | § - S cemmeen R B b S 5
wee? 20

A 4

Fig. 9 (a) Typical received signal. (b) Cepstrum of (a).
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Fig. 10 TFive received signals near the edge of a circular gelatin phantom.
Fig. 11 Power spectra corresponding to signals shown in figure 10.

Homomorphic filtering is useful only if the duration of the cepstrum of a signal
is less than the duration of the signal itself. When this condition is not satisfied,
time gating the original signal will yield better results than filtering the cepstrum of
the signal. In figure 8 we show a typical received signal and its cepstrum. The dura-
tion of the cepstrum is less than the duration of the signal. Thus homomorphic
filtering is applicable to ultrasonic tomography.

We now demonstrate homomorphic flltering on real signals containing mul-
tipath. The five values of x.(t) in figure 10 were obtained as a transmitter/receiver
pair was scanned past the edge of a circular phantom made of an oil-based gel. In
the first signal, the beam from the transmitter to the receiver is completely within
the object. In the second signal, the beam is beginning to leave the object. The
predominant pulse corresponds to the signal traveling trough the object. The small
“blip" on the left is the contribution from the path outside the object. In the third

 signal, the portion received via the outside path is comparable in magnitude to the

signal received from the jpath inside the object. Finally in the last signal, the path
llpl_glng the transmitter and the receiver is completely outside the object.

The power spectra corresponding to the five signails in figure 10 are shown in
figure 11. The scalloping due to multipath Is slightly evident in the second power
spectrum and very visible in the third since the contributions from the paths are
nearly equal at this point.

The power cepstra corresponding to the five signals in flgure 10 are shown in
figure 12. The presence of multipath is not clear in these plots. We now digress for
a moment and determine analytically the power cepstrum corresponding to a signal
that has a Gaussian power specirum. A Gaussian model is a good approximation to
the power spectra of typical ultrasound signals.

Consider a signal x{t) with a Gaussian power spectrum given by

IX(t) |2 = Aexp[—%—( H“,-—h’)"’] - (79)
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TR
%

@ TIME > @ TIME >
. Fig. 12 Power cepstra corresponding to signals shown in figure 10.

Fig. 13 Same power cepstra that are shown in fligure 12, but now the first point has
been excluded.

The logarithm of the power spectrum given in (73), Z(t), is given by

Z(0) = ayf® + aglf] + ag , (74)
where
o = -2l (75)
f
az = ;':— (76)
az = InA - -"’2— (77)
a=1n 20%

The power cepstrum corresponding to x(t), x{t). is determined by taking the
Fourier transform of (74)

B
x(t) = f(a,t’ + ag|t| + ag)exp(—j2ntt)df . (78)
-8
The limits on the integral are set to -B and B in order for the Fourier transform to

exist. The function given in (74) is not. square integrable over the region (—m,=) .
The region (~B,B) represents the bandwidth required when samples are taken in the
time domain every 2—la-aeconds.

The integral in (78) can be evaluated through the use of the following relation-
ship (eq. 2.8633.2 in ret. [32])

- n xn-k 1
fx"cos axdx = é}ok! (k) Fsin(ax#- Ek") . (79)

The result after substituting (79) into (78) is

252

s e et ot e

O i



al. (b}
ralue.

(20)

ater fre-
‘+nece the

MULTIPATH ARTIFACT CORRECTIONS

2
_ 2agsin2nBt Bsin2nBt _ [sinmBt]
*) = 2mt * ag{ mt [ m
80
+ a,|Beos2mBt B?sin2nBt _ 4sin 2Bt | ( .)
T o(m)? mt (emt)® |’
Now consider samples that occur every él—B—seconds. The samples occur at
~_ o~y o
x'_x(ZB) , i=0,1,... (81)
The sample values can be determined by substituting (80) into (81)
B? . foB? 1§ )
-2 --28) , i=0
602  20° (InA 20? ) '
-~ | B 2to -
| = ;;Eig-(l B ) , iisodd (82)
B? .
" motit , liseven .

_ From (B2) it can be seen that all the amplitude information is contained in the
%o term. The center frequency, fo, can be determined from the x, term if o is
known. This is useful because when the frequency shift method is applied to esti-
mate the attenuation coeflicient, only fo has to be determined. This implies that
only the x, term has to be retained in the power cepstrum. It has been found
though, that in the presence of noise, a few more terms have to be retained to
obtain reliable estimates.

We now return to the five signals previously used as an example. In figure 13
we show the same cepstra that were shown in figure 12 but now the cepstra have
been plotted without the x¢ term. [kq. (82) indicates that the cepstra should
approach zero with a one over i dependency. Thus, the cflects of multipath are the
ripples on the right sides of the middle signals.

The low pass filtering step is accomplished by setting to zero all but the first
three points in each cepstrum. (The zero'th terms are one of the three points.) The
resulting power spectra are shown in figure 14. It is seen that the scalloping due to
multipath has been removed.

4.2 Median flitering

The second way to remove multipath is to initially ignore the presence of mul-
tipath in the received waveforms. Projections of the attenuation coeflicient can be
formed using the estimation technique presented in Section 2. It is obvious that
multipath manifests itsell through errors in the projection space. In this section we
show a method to remove these errors.

Consider sample values in the projection space that correspond to paths near
cdges within the object. Figure 15 depicts four paths within an object near edges
within the phantom. It Is obvious that signals received along line-of-sight paths
corresponding to these four paths will be corrupted by multipath. Thus. the
altenuation projection will have errors at these locations. This can be seen infigure
18 where we show a computer simulated attenuation projection of the object shown
in figure 15. (The details of the computer simulation can be found in [38].) The
eflect of multipath is to introduce the four glitches in the projection.

It is obvious that multipath will not always cause glitch noise. When the rela-
tive arrival times for the multipath components in a signal remain approximately
constant for a few samples in a projection, then the effect of multipath is a sys-
tematic error in the projection. This type of error will not appear as an incon-
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Fig. 14 Recovered power spectra after homomorphic filtering.

sistency in a projection. This situation can be seen in figure 15. Consider the two
extreme glitches. Even though they do appear to be inconsistencies within the pro-
jection, they could also be considered to be valid projection values. Clearly, the
errors in the middle of the projection are glitches.

Multipath can be removed if the multipath glitches can be removed from the
projection. Linear flltering is not applicable for the removal of the noise because of
the large bandwidth of glitch noise. The non-linear filtering method called median
filtering has been shown to remove glitch noise [33-35]. We now present a short
introduction to the theory of median filtering. More complete information can be
found elsewhere [15].

Consider the following N-point sequence
X0, Xye -1 XN=-1 - (83)

A window of length length 2J+1 centered around i is denoted with W/. The window is
given by the following set of points

W= g e XX, 0 o Xindd (84)

The median of this window, M(W/). is defined to be the (J+1)'th largest (or
equivalently (J+1)'th smallest) point in the set W/.

The output of a median filter applied to the complete set of x;'s is defined as
yi= M(W)) | i=0J+1,. N=J=-1 ., (85)

The values of y; for i=0....J-1 and i=N=J....N=1 can not be defined with this
method. This is because there are an insufficient number of input points to form
the window. Usually the input is passed directly to the output at these points

yi=% , i=0,1,.J-1 and i=N-J,...N-1 . (86)

A demonstration of median flitering is shown in figure 17. A sequence of N=12
points is presented at the top of the figure. All of the possible positions for a J=1
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Fig. 15 Example of possible locations of ray paths that can lead to multipath dis-
tortion in the projection.

Fig. 186 Simulated projection (solid line) of object shown in figure 15. Dashed line is
true projection.

window are shown in the middle. The output of the median fllter is shown on the
bottom {note that the output is plotted upside down). It {s clear that the median
filter smoothed the input waveform.

The properties of median filters have been derived in [38]. The main point of
this paper is the concept of a root signal. Consider a signal that consists of neigh-
borhoods that are either strictly monotonic or constant. The length of each neigh-
borhood must be at least J+1. .Also assume that between a pair of increasing and
decreasing monotones there is a constant neighborhood. Then this signal is invarl-
ant to median filtering and is called a root signal.

We now demonstrate that projections of a complicated phantom are approxi-
mately root signals. Consider the computer simulated reconstruction of the Shepp
and Logan head phantom [37] in figure 18. This is considered to be a very difficult
phantom to image because of the large contrast between the simulated skull and
the simulated tissue. Fifty projections with one-hundred samples per projection
were used to obtain this reconstruction.

The projections are then fiitered with a median filter. The length of the window
s J=2. The subsequent reconstruction is shown figure 19. If this figure is compared
to flgure 18, one sccs that the reconstructions of this complex phantom are almost
invariant to median filtering. This implies that the projections are also invariant to
median filtering. Thus the projections are approximate root signals. We assume
that we can extend this result to speculate that projections from most objects are
also root signals.
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Fig. 17 Demonstration of median filtering, Top signél is the input to the filter. Bot-
tom signal is the output of the fiter.

It one compares the reconstructions presented in figures 18 and 19, it can be
seen that the only difference between them is the dark area in the center of the
latter reconstruction. This error also results in the large error at the center of the
center-line profile shown in figure 19. This error is a result of the fact that projec-
tions of this phantom consist of a monotonically increasing section followed by a
monotonically decreasing scction. (Fig. .20 shows a sample projection of the Shepp
and Logan phantom.) Projections of this phantom would be root signals {f the two
monotonic sections were separated by a constant region. The effect of a median
filter on projections of this nature is to put a constant region between the two
monotonic sections. This can be seen in figure 21 where the central portion of the
projection shown in figure 20 is shown by the solid line. The dashed line
corresponds to the central portion of the projection after it was passed through a

1.050
1.025 4
1.000

. 9750 -

. 9500 T T T
-1.000. -.5000 0.000 . 5000

Fig. 18 Computer simulated reconstruction of the Shepp and Logan head phantom.
(a) Tomogram. (b) Center-line-profile.
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Fig. 18 Computer simulated reconstruction of the Shepp and Logan head phantom.
Median filter incorporated on the projections before reconstruction. (a)
Tomogram. (b) Center-line-profile.

median filter. The only difference is the constant region at the center. This

discrepancy leads to the dark region in the reconstruction shown in figure 19.

Consider additive gliteh noise of length less than J+1 added to different posi-
tions of a root signal. Then it is easy to see that after one pass with a median filter
it will be reduced. This is demonstrated in figure 22. 1n the top frame, one of the

1.000

2.000 2.000
1.500 - 1.950 -
1.000 1;” ;
.5000 - 1.6850 4
0.000 T T T .800 T T T
-1,000 ~-.%000 0.000 .5000 1.000 -,2000 =-.1000 0.000 .1000 .2000

@

Fig. 20 Projection of the Shepp and Logan head phantom.

Fig. 21 Central portion of projection shown in figure 20. Dashed line is result after
median fillering.
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Fig. 22 (a) Projection of the Shepp and Logan head phantom. (b) Same as (a) but
impuise noise has been added. (c) Resuit of (b) passed through a median
filter.

projections of the Shepp and Logan head phantom is presented. In the middle
frame glitch noise of length two samples has been added to the correct projection
at different positions. The result after median filter of length J=2 is shown in the
bottom frame. The glitch noise has been reduced.

Thus, it is seen that if multipath can be modeled by glitch noise in the projec-
tion space, then a median filter can be used to remove it. A demonstration of the
ability of median filtering to reduce the artifacts caused by multipath is shown In
the next section.

5. EXPERIMENTAL RESULTS

In this section the correction methods for multipath are evaluated. The
correction methods are tested using data obtained from scanning two tissue
equivalent phantoms. These phantoms are used instead of biological samples
because they aliow for a more quantitative evaluation of the resulting tomograms.
A d]escript.ion of the scanner used to collect the data can be be found elsewhere
{38].
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Fig. 23 ATS Laboratories phantom.
Fig. 24 Time-of-flight reconstruction of the ATS phantom.

All of the reconstructions shown in this section are obtained with a fixed set of
parameters. Each tomogram is reconstructed using 50 projections. Each projec-
tion is sampled at 100 locations. The images are displayed on a 128 by 128 display
raster. .

The attenuation images are obtained with the frequency shift method. The nor-
malized first moment is used to calculate the center frequency of the power spec-
tra. A 256 point Fast Fourier Transform is used to calculate power spectra. When
homomorphic filtering is applied, only three samples are retained per cepstrum. In
the case of a median filter, a window with length J=2 is used.

The first phantom used to test the multipath correction methods was con-

- structed by the ATS lLaboratories in Norwalk, CT. A picture of this phantom is shown

in figure 23. The phantom was specifically designed to introduce multipath errors.

The phantom is a piece of tissue equivalent oil gel [39]. The three holes and the
quarter circle are filled with water.

Figure 24 shows a time-of-fight reconstruction of the ATS phantom. Figure
25(a) shows an attenuation image. There has been no compensation for multipath
in this image. The two large streaks in figure 25(a) are due to artifacts introduced
by the scanner. When one compares the time-of-flight and the attenuation tomo-
grams, it is clear that the former tomogram is a better image.

Homomorphic flltering, as a correction method, is now applied to the received
waveforms. The resulting attenuation image is shown in figure 25(b). The recon-
struction after median filtering the projections is shown in figure 25(c). Figure
25(d) shows the reconstruction when both homomorphic and median fllters are
simultaneously applied.

The images shown in figure 25 demonstrate how the correction methods
improve the contrast of the reconstructions. The best image is probably the one
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Fig. 25 Attenuation reconstruction of the ATS phantom. (a) Uncorrected. (b) Mul
tipath compensation by homomorphic flitering. (¢) Multipalh compensa-
tion by median filtering. (d) Multipath compensation by homomorphic and
median filtering.

where only median filtering is applied, figure 25(c). The image with the best con-
trast is the one where both homomorphic and median filters are applied, figure
25(d). 1t is obvious that improving the contrast also enhanced the artifacis due to
relraction. .

When one compares the time-of-flight reconstruction shown in figure 24 to the
corrected atlenuation image shown in figure 25(c), one sees that the two images are
of similar quality. This implies that the errors in the attenuation estimates caused
by the scalloped power spectra have been reduced.
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Fig. 28 University of Wisconsin Breast phantom.

The second phantom used to test the multipath corrections is a breast phan-
tom designed and built at the University of Wisconsin {40]. A picture of this phan-
tom is shown in figure 26. At a level 2.5 crn below the base of the phantom are two
simulated lipomas and two simulated tumors. The uitrasonic characteristics of the
components of the phantom at this level are depicted in figure 27. An X-ray CT
image ol this plane is shown In figure 28. It should be noted that the ultrasound
characteristics are not necessarily correlated with the x-ray characteristics. When

comparing the x-ray images to the uitrasound images, only a geometrical com-
parison is valid.

Glandular-parenchyms
C=1570
a=, 6

T™ Fat:
C=1460
C.t'.
Skin:
C=1570
a=,§

Fig. 27 Plane of the Breast 2.5 cm above the base of the phantom.
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Fig. 28 X-ray CT image of the plane shown in figure 27.

A time-of-flight reconstruction of the plane containing the lipomas and tumors
Is shown in figure 29. The velocity of sound within the tumors, lipomas, glandular
parenchyma, and the TM fat was measured to be 1556 m/s, 1508 m/s, 1551 m/s,
and 1455 m/s, respectively. Thus, the imaging system produces Images that are
quantitatively correct to a high degree.

The uncorrected attenuation Image is shown in figure 30(a). The results with
homomorphic, median, and homomorphic and median filtering are also shown in
figure 30. It is clear that the correction methods Improve the quality of the

Fig. 29 Time-of-flight reconstruction of the Breast phantom.
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attenuation images. This is especially clear when one notices that the edge
enhancements around the tumors and around the lipomas have been reduced. The
edge artifact around the edge of the phantom was not completely eliminated
because the assumplions used to justify the use of homomorphic and median filters
break down when rays travel near edges. By break-down we mean that in the case
of homomorphic filtering the relative arrival times are too small to be resolved; in
the case of median filters the multipath error becomes systematie.

Direct conclusions cannot be made when the time-of-flight tomogram shown in
figure 29 is compared to the corrected attenuation image shown in figure 30(d).
This is because the attenuation coefficients of the components in the breast phan-
tom are not linearly related to the respective velocity components. The two recon-
structions are similar in the sense that the two tumors and two lipomas are visible
in both sets of images and that they are of comparable size.

8. CONCLUSIONS

This report dealt with computed imaging techniques for ultrasonic tomogra-
phy. Investigations included the development of estimation methods for integrated
acoustic characteristics, artifact formation in ultrasonic tomograms, and correc-
tion procedures for multipath errors in images of the attenuation coefficient.

In Section 2 we concentrated on measurement techniques for estimating the
refractive index and the attenuation coeflicient. Initially we presented the time-of-
flight methods for estimating the refractive index. Then, time-walk and time-hop
artifacts in time-of-flight measurements were discussed. An estimator for the
attenuation coeflicient was also presented in Section 2.

In Section 2 we concentrated on estimating the acoustic parameters along the
line-of-sight path between a transducer pair. In a tomographic application, it is
possible for multiple rays to link the transducers. The existence of muitipath along
with curved ray paths, caused by refraction, invalidates the requirements for the
reconstruction algorithm. This will result in artifacts in the reconstructed images.

In Section 3 we studied the artifacts generated when multipath is present in
the received waveforms. We showed that multipath has a more adverse affect on
estimates of the attenuation coefficient than on estimates of the refractive index.

Methods to correct for the artifacts caused by multipath were presented in
Section 4. The first method, homomorphic filtering, tries to remove the scalloping
in the power spectra caused by multipath. The second correction method, an appli-
cation of median flitering, removes the inconsistencies in the projection domain
that are caused by multipath.

In Section 5 the correction procedures were tested on data obtained by scan-
ning two tissue equivalent phantoms. Resuits indicated that the methods
significantly reduced the artifacts caused by multipath. Homomorphic and median
fitering were equally successful in removing the multipath artifacts. Becausc of
the added time needed to perform the additional Fourier transforms in
homomorphic flitering, median filtering seems to be a more viable correction tech-
nique.
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