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Spiral scanning gradient waveforms can be optimized with 
respect to blurring from off-resonance effects by minimizing 
the readout time. This is achieved by maximizing the gradient 
amplitude during the scan so that the edge of k-space is 
reached as quickly as possible. Gradient hardware con- 
straints are incorporated by considering a circuit model for 
the gradient coil and amplifier. The optimized gradient wave- 
forms are determined by a set of coupled differential equa- 
tions. The resulting solutions have shorter readout time than 
solutions that do not consider the circuit model. 
Key words: spiral scanning; fast imaging; magnetic resonance 
imaging. 

INTRODUCTION 

Spiral scanning has been demonstrated for coronary ar- 
tery imaging (I), abdominal imaging (2) , flow imaging (3), 
and measuring blood oxygen level dependent (BOLD) 
contrast (4). Advantages of spiral scanning include fewer 
excitations than conventional Cartesian spin warp meth- 
ods and lower sensitivity to motion and flow artifacts (5, 
6). The main problem with spiral scanning is relatively 
long readout time compared to Cartesian scanning, 
which leads to blurring if spins are off resonance due to 
B, inhomogeneity, chemical shift or susceptibility (7-9). 
The phase accumulated by off-resonant spins increases 
with time. High frequencies are measured with a greater 
time delay from the center of k-space than low frequen- 
cies, leading to blurring that increases with readout time. 
The blurring is significantly worse than the effect of high 
frequency attenuation due to T2*. Minimizing the blur- 
ring may be of greater importance than motion and flow 
effects for high resolution scanning. Typically, multiple 
interleaves are used to reduce the blurring by allowing 
reduced readout time per interleaf while keeping the 
spatial resolution fixed. For a given spatial resolution, 
field of view (FOV), and number of interleaves, the blur- 
ring is minimized by maximizing the gradient amplitude 
during the acquisition, because this reduces the time 
required to reach the edge of k-space. 

In this paper, we focus on 2D spirals, but note that the 
methods are applicable to 3D spirals (10) as well. Three 
types of 2D spiral trajectory have been shown: constant 
angular velocity (111, constant slew rate with negligible 
acceleration (3), and maximum gradient (1, 12).  The ad- 
vantages of each are as follows. Spirals using the maxi- 
mum gradient amplitude have the shortest readout time. 
Spirals with constant slew rate and negligible accelera- 
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tion have mathematically closed form gradients at large 
radii in k-space. Constant angular velocity spirals can be 
reconstructed with filtered backprojection, avoiding the 
aliasing artifacts attendant with interpolation (1 3) or 
gridding (14), which are required by the other two meth- 
ods. With reasonable computing power, mathematically 
closed form gradients are not a major advantage. The 
aliasing that accompanies gridding can be reduced to an 
acceptable level by careful choice of reconstruction pa- 
rameters (15). Therefore, the best approach is to use the 
maximum gradient. 

All spiral techniques must incorporate hardware con- 
straints into calculation of the gradient waveforms. The 
constraints typically relate to instantaneous peak cur- 
rent, root mean squared (RMS) current and current slew 
rate for the gradient driver. In this paper, we incorporate 
the hardware constraints by considering a circuit model 
for the gradient coil. We show that, with this model, the 
gradient waveforms are determined by a set of coupled 
differential equations. The solutions have shorter read- 
out times than solutions which do not consider the cir- 
cuit model and hence lead to reduced blurring. 

SPIRAL k-SPACE TRAJECTORY 

Throughout the paper we use bold font to denote a vec- 
tor. The Cartesian components (kx, ky) of the k-space 
position k can be written in polar coordinates (k, 0) as 

k,y = k cos 0 , [I1 

ky = k sin 0 . [21 

To maximize sampling efficiency, we consider only ra- 
dially uniform spiral k-space sampling. It is straightfor- 
ward to show that radially uniform sampling requires 

constant - . Using the convention that k = 0 at 0 = 0, 

uniform sampling requires an Archimedean spiral, de- 
fined by the requirement that 

dk 
do 

k(t) = AO(t) , [31 

where A is a constant. The time dependence of 0 deter- 
mines the rate of traversal of the spiral trajectory. The 
purpose of the rest of the paper is to show an algorithm 
for calculating O ( t ) .  

The value of A is determined by the Nyquist criterion 
that 

M 
A k S -  D '  

where Ak is the radial distance advanced by one interleaf 
during one rotation, D is the scan FOV, and M is the 
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HARDWARE CONSTRAINTS 

We consider hardware constraints appropriate for the 
gradient amplifiers of a 1.5 T Signa scanner (GE Medical 
Systems, Milwaukee, WI). The constraints limit peak cur- 
rent, RMS current and slew rate. We consider only iso- 
tropic constraints where the limits are the same on all 
axes. Nonisotropic constraints can be handled by apply- 
ing the most restrictive limits to all axes. 

For a given k-space path, RMS current is reduced by 
increasing TR. The RMS current limit effectively be- 
comes a limit on the minimum TR. Because our goal here 
is to minimize off-resonance blurring by minimizing 
readout time and not necessarily to minimize TR, we will 
not consider the RMS current limitation. 

To derive the peak current and slew rate limitations, 
consider the LR circuit model for the gradient coil shown 
in Fig. 2. For a given axis, say x, the amplifier voltage V, 
required to produce coil current I, is given by 

LI/ 

FIG. 1. k-Space trajectory of a single spiral interleaf showing radial 
sample spacing M .  

number of interleaves (see Fig. 1). If the maximum Ak in 
Eq. [4] is chosen, Eq. [3] requires 

M 
2rrD ' 

A = -  

In the following section, we discuss how hardware con- 
straints determine the gradient amplitude and slew rate, 
which are now calculated for later use. Using Eqs. [11-[31, 
the Cartesian components of the gradient G are given by 

297. 2rr . 
G, = -k, = -A6(cos 6 - 6 sin 6) , [GI Y Y 

2 r r .  2rr  . 
G, = -ky = -AO(sin 0 + 6 cos 6) , 
' Y  Y 

where a dot denotes the time derivative. 
We define the instantaneous gradient slew rate S as the 

time derivative of the gradient. Using Eqs. [6] and [7], the 
Cartesian components of S are given by 

277 

Y 
S, = G,y = -A[(B - 66') cos 0 - (26' + 04) sin 61 , [81 

. 2 a  
S, = G, = -A[(B - Oe") sin 0 + (28' + 04) cos 01 . [91 

The vectors G and S rotate with time and have time 
varying magnitudes, denoted G and S ,  respectively, 
which we use later. Equations [6] through [9] can be used 
to show that G and S are given by 

Y 

2rr . 
G = -AoJ~T$, 

Y 
and 

2rr 

Y 
S = -A[(B - 06')' + (Ze" + 68)2]1'2 . [111 

V,=I,R +L- ,  dI, 
d t  

where R and L are the resistance and inductance, respec- 
tively, of the gradient coil and are assumed to be the same 
for all three axes. 

Equation [12] can be recast in terms of peak gradient 
slew rate and amplitude. Let the coil gain be g, defined by 

Amplifier 
I 

Gradient coil 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

t IX 

FIG. 2. Gradient coil equivalent LR circuit for the x axis. Amplifier 
voltage and coil current are V, and /,, respectively. 
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and let V,,, be the nominal maximum voltage obtainable 
from the gradient amplifier. Combining Eqs. [I21 and [13] 
gives the gradient slew rate constraint 

Let G,,, be the maximum gradient obtainable, where 
G,, is determined from Eq. [13] by the peak instanta- 
neous current and the coil gain g. The gradient slew rate 
limit in Eq. [14] is lowest when G, = G,,,. We denote 
this most restrictive slew rate as S,,,, defined by 

For fixed peak current, and coil characteristics deter- 
mined by R ,  L, and g, s,,, is determined by the peak 
voltage V,,,. The peak instantaneous slew rate con- 
straint for the x axis can then be described by 

Sx 5 Smax + - (Grnax - Gx) . 1161 

The peak current constraint for the x axis can be de- 
scribed by 

Gx 5 Gmax . [I71 

Constraints similar to Eqs. [16] and [17] hold for the other 
two axes. 

(3 

SPIRAL EQUATIONS OF MOTION 

The least restrictive condition is to apply Eqs. [16] and 
[17] to the components of G and S on each axis. Instead 
we apply these equations to the magnitudes of the vec- 
tors, i.e., to G and S, as was done in refs. 1 and 12. The 
implications of this choice are discussed in the next 
section. We define 

So = S,, + - (Gmm - G) (3 1181 

where, consistent with our assumption about isotropic 
constraints, R and L are defined to he the resistance and 
inductance for the axis with the smallest value of RIL. 
The optimized gradient solution is constrained by 

S = So, if G <  G,, , [I91 

[201 

Equations [19] and [20] can be combined with Eqs. [ l o ]  
and [I11 to give the following differential equations for 
the spiral trajectory. 

G = 0 , otherwise. 

where 

[a2(1 + e") - 84(2 + 02)2]1'2 if G < G,,, , 
0 otherwise f(6, 6)  = 

and 

Note that a is implicitly a function of 0 and 6 through 
the dependence of So on G in Eq. [18]. 

RESULTS 

Although we have not found analytical solutions to Eqs. 
[21] and [22], they can be solved by standard numerical 
methods. We have used regula falsa, and 4th order 
Runge-Kutta (16). 

The benefit of using the circuit model is reduced read- 
out time through faster increase of the gradient ampli- 
tude during readout. Not using the circuit model forces 
using the most restrictive slew rate in order to protect the 
hardware, i.e., So = Sma. This result is equivalent to 
setting R / L  = 0 in Eq. [18]. We have analyzed the benefit 
of the circuit model by calculating the readout time for a 
single interleaf. The readout time was calculated by solv- 
ing Eqs. [21] and [22] for O ( t )  and finding the value of t  for 
which O ( t )  = k,/A where k, is the maximum spatial 
frequency required for the desired resolution. Figure 3 
shows the x component of the k-space trajectory calcu- 
lated with and without the circuit model, demonstrating 
that k,, is reached sooner when the circuit model is used. 
The circuit model approach is most beneficial for scan 
parameters for which the gradient amplitude does not 

krn 

- 1  4 - 
0 5 10 15 20 25 

time (msec) 
FIG. 3. Comparison of kJk,,, as a function of time for gradient 
waveforms calculated with the circuit model (solid line, WL = 1 
kHz) and without the circuit model (dashed line, WL = 0), where k, 
is t h e  maximum spatial frequency required. Acquisition parame- 
ters are 20 cm FOV, 20 interleaves, 256 pixels, S,, = 17 T/rn/s 
and G,, = 20 mT/m. The values of G,,, S,,,, and WL are 
hypothetical and not necessarily representative of actual perfor- 
mance for any commercial scanner. 
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FIG. 4. Percentage reduction in readout time as a function of FOV 
using the circuit model for the following three values of WL: 0.5, 1, 
and 2 kHz. Acquisition parameters are 20 interleaves, 256 pixels, 
S,, = 17 T/m/s and G,,, = 20 mT/m. 

reach G,,, by the time k,,, is reached. For a fixed matrix 
size, increasing the FOV decreases k,, decreasing the 
readout time, and decreasing the maximum gradient am- 
plitude reached by the end of the readout. Thus, the 
readout time reduction from the circuit model increases 
with increasing FOV as shown in Fig. 4. The reduction 
was calculated by finding the percentage difference be- 
tween the readout times for the values of RIL shown in 
the figure and the readout time for RIL = 0. 

Figure 5 shows plots of the readout time for a single 
interleaf as a function of S,,,. For a fixed RIL, readout 
time decreases with increasing S,, because the gradient 
reaches G,,, earlier in the acquisition. For S,,, + m, the 
readout time approaches an asymptotic limit, indepen- 
dent of RIL, corresponding to G = G,,, for the entire 
scan. The benefit from the circuit model is reflected in 
the difference between the curve with RIL = 0 and the 
other curves. This difference increases with decreasing 

RIL = , 

WL = 

WL = 

.5 kHz 

1 kHz 

2 kHz 

S,,, because of the additional slew rate performance 
which the circuit model allows. 

Figure 6 shows images of phantoms scanned using 
gradient waveforms calculated with and without the cir- 
cuit model. Some areas where the blurring was reduced 
as a result of the circuit model are indicated with arrows. 

For systems with small S,,,, corresponding to low 
peak voltage V,,,,,, the circuit model can be an effective 
method of improving performance in one of several 

S,,, (T/m/sec) 

FIG. 5. Readout time for one interleaf as a function of S,, for the 
following four values of WL: 0, 0.5, 1, and 2 kHz. Acquisition 
parameters are 20 cm FOV, 20 interleaves, 256 pixels, and G,,, = 
20 mT/m. 

FIG. 6. Phantom scanned using gradient waveforms calculated (a) 
with the circuit model (R/L = 1 kHz) and (b) without the circuit 
model (WL = 0). Acquisition parameters are 32 cm FOV, 14 
interleaves, 256 pixels, S,, = 20 T/m/s and G,, = 20 mT/m. The 
circuit model reduced the readout time from 26.48 to 22.43 ms. 
Some areas where the blurring was reduced as a result of the 
circuit model are indicated with arrows. 
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ways. The readout can be shortened to reduce blurring as 
already discussed. Alternatively, the readout time and 
number of interleaves may be kept fixed, allowing greater 
k,,, to be attained, with resulting higher resolution. Or the 
spatial resolution and readout time can be held fixed, 
and the number of interleaves decreased to reduce over- 
all scan time. 

Constraining the magnitudes of the rotating vectors G 
and S ,  instead of their components, guarantees that the 
hardware limits are not violated as the vectors are peri- 
odically aligned with the gradient axes, but is overly 
restrictive the rest of the time. This over-restriction has 
the advantage of simplifying calculation of gradient 
waveforms for multiple interleave scans. For multiple 
interleaves, the gradients may be calculated for one in- 
terleaf and waveforms for successive interleaves ob- 
tained by rotation. Constraining the magnitudes of the 
gradient and slew rate guarantees that the hardware lim- 
its are not violated for any rotation angle. We speculate 
that better performance results from a solution which 
applies Eqs. [16] and [17] to the components of G and S 
on each axis instead of to the vector magnitudes. An 
example of this approach for spiral gradients with 2D 
selective excitation is shown in (12). 

CONCLUSION 

Off-resonance blurring in spiral scanning is minimized 
when the maximum gradient amplitude is used for the 
entire acquisition. When the maximum gradient ampli- 
tude approach is combined with constraints in the form 
of a circuit model for the gradient coil, the gradient 
waveforms for an Archimedean spiral are determined by 
a set of coupled differential equations. Solution of the 
equations shows that the readout is shorter when the 
circuit model is considered than when the most restric- 
tive slew rate limit is imposed. For systems with limited 
slew rate capability, this approach can be effective at 
improving performance by reducing blurring, increasing 
spatial resolution or decreasing overall scan time. 
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