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A convolutional backprojection algorithm is derived for a fan beam geometry that has an angular-
dependent displacement in its center-of-rotation from the midline of the fan beam. In both x-ray
computed tomography and single photon emission computed tomography, misalignment can
occur when the mechanical center-of-rotation is not colinear with midline of the fan beam. In
some cases the shift in the center-of-rotation is constant for every angle, whereas, in other cases it
varies with angular position. Standard reconstruction algorithms, which directly filter and
backproject the fan beam data without rebinning into parallel beam geometry, have been derived
for a geometry having its center-of-rotation at the midline of the fan beam. However, in the case of
any misalignment of the center-of-rotation, if these conventional reconstruction algorithms are
used to reconstruct the fan beam projections, structured artifacts and a loss of resolution will
result. Simulations are performed that illustrate these artifacts and demonstrate how the new
algorithm corrects for this misalignment. A method for estimating the parameters of the fan beam

geometry, including the angular-dependent shift in the center-of-rotation, is also described.

I. INTRODUCTION

Fan beam reconstruction algorithms were first derived
based on the assumption that the mechanical center-of-rota-
tion is colinear with the midline of the fan beam.! This type
of scanner is depicted in Fig. 1. In some situations it is not
possible to align the midline with the mechanical center-of-
rotation. Figure 2 depicts a scanner in which the center-of-
rotation is perpendicularly displaced from the midline of the
fan beam. In x-ray computed tomography (CT) a constant
misalignment can occur when the x-ray source is misposi-
tioned. A constant misalignment occurs in single photon
emission computed tomography (SPECT) when the trans-
axial converging collimator that is used with a rotating gam-
ma camera®™ is constructed with insufficient precision so
that the focal point and the center-of-rotation do not project
along the same ray. In CT and in SPECT it is also possible
that the shift in the center-of-rotation varies with angular
position because of mechanical instabilities in the gantry.
When data from a system with a constant misalignment
are reconstructed without taking into consideration the shift
in the midline, there will be a loss of resolution for 360° re-
constructions.” For half-scans,® which are reconstructions
from projections sampled over 180° plus the fan angle, struc-
tured artifacts will result.” When the shift in the center-of-
rotation has an angular dependence, structured streaks will
be present in reconstructed images. In the parallel beam
case, it is possible to simply shift the projection prior to pro-
cessing in order to account for the new center-of-rotation.®
However, the fan beam case cannot be corrected by a simple
shift, unless, of course, the fan beam projections are re-
binned”’ into parallel beam projection sets. Rebinning, how-
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ever is computational expensive and it degrades resolution.

Horn described reconstruction algorithms for arbitrary
fan beam geometries for the case when the midline is colinear
with the center-of-rotation.'® Weinstein described a scanner
where the focus-to-center distance is a function of rotation
angle.'! However, the results of these papers are not extenda-
ble to the misaligned scanner described here.

A reconstruction algorithm was derived assuming that
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FiG. 1. Ideal fan beam geometry.
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F1G. 2. Fan beam geometry with a displaced center-of-rotation.

the center-of-rotation was displaced from the midline of the
fan beam by a distance that is constant for every angle.'? In
this paper we extend that work to derive a convolutional
backprojection algorithm which corrects for the misalign-
ment of the fan beam for the case of an angular-dependent
shift. Simulations are given which show the effects of the
shift and demonstrate the new algorithm’s ability to correct
for the misalignment. A method is also developed to estimate
the parameters of the fan beam geometry including the angu-
lar-dependent shift in the center-of-rotation.

Il. RECONSTRUCTION ALGORITHM DERIVATION

The function f(x,y) is used to denote the cross section of
an object to be reconstructed from its projections. The func-
tion f(x,y) may be the distribution of the linear attenuation
coefficients for x-ray CT or the radiopharmaceutical con-
centration for SPECT. It is assumed that the object is zero
outside of a circle of radius R. A parallel projection of f(x,y),
P, (0:t), is the collection of line integrals through Sf(x,y)
along the paths given by

t=xcosf +ysinb, ()

for a fixed value of 6.

A polar coordinate version, f(7,¢), of the original func-
tion, f(x,y), can be reconstructed from its projections using
the following integral equation’>:

27 R
Sr.é) =f f P, (6,6)h [rcos(6 — @) —t]dtdb,(2)
0 — R

where A (1) is given by

h(t) :f |41/2 exp(2jmut)du. (3)

Then A (t) satisfies
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h(at) = h(t)/a> (4)

Consider the fan beam geometry depicted in Fig. 2 in
which the midline is displaced from center-of-rotation by an
angular-dependent value, 7(a). It is assumed that 7(a) and
its derivative are continuous. A fan beam projection in this
system is denoted by p,(a,s). It can be seen from Fig. 2, that
the fan beam and parallel projections are related as follows:

Py (6,1) =p(a,s), (5)
for

t=[s+7(a)]Z, (6)

6 =a + tan"'(s/D), (7)

where, for mathematical purposes, it has been assumed that
the focus-to-detector distance, D', is equal to the focus-to-
center distance, D, and

Z=D(s*+ D% (8)
Using Egs. (6) and (7) the reconstruction formula given
by Eq. (2) for the parallel projection case can be implemen-

ted in the fan beam (a,s) space. The components of the Jaco-
bian for this transformation are

—g—z:Z+ [s+7'(a)]-a£= (D2~ r(a)s]1Z3D 2, (9)
s s

at

LA (10)
Ja 7

06 _ zZ?

—=D(s*+D?*) =", (11)
3 (s°+D") D

o0

P, (12)
Jda

where 7, is the partial derivative of 7(a) with respect to a.
The previous four equations can be combined to deter-
mine the Jacobian

J(s,@) = [D?*—r(a)s—7,D1Z°D > (13)
]

The transformation between the (¢,8) and (s,) spaces has
to be regular.’* The transformation is regular if (1) it is con-
tinuous; (2) its partial derivatives are continuous; and (3)
the Jacobian of the transformation is nonzero in the region of
interest. Since the transformation given in Egs. (6) and (7)
is continuous and the partial derivatives of the transforma-
tion, Egs. (9)—-(12), are continuous, in order to prove regu-
larity all we have to prove is that the Jacobian of the transfor-
mation does not go to zero. It can be shown that the Jacobian
is greater than zero provided that the following condition is
satisfied

D—r(@R/(D*—RYH V25 1,. (14)
Using Eqgs. (6), (7), and (13), we arrive at

27 AW
fird) =f f pr(as)[D?—7(a)s—7,D]1Z°D*
0 - W

x h{rcos[tan™'(s/D) + a — @]
— [s+ 7(@)]1Z}ds da, (15)

where Wis the value of s for which p,(a,s) = 0 with |s| > W.
The variable W is determined by letting ¢ = R in Eq. (6) and
solving for s
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DR [7(a) +D*—R*1"V*—r(a)D?

(D*—R?) '
The argument of the filter /# in Eq. (15) can be written as
reos[tan” '(s/D) +a —¢] — [s+ ()12

W= (16)

=UZ(s —s), (17)
where
s'=[rDcos(a — ¢) — r(a)D]/[rsin(a — ¢) + D], (18)
U= [rsin(a¢ — ¢) + D]/D. (19)

Using Eqs. (17) and (4) we see that
h{rcos[tan '(s/D) + o — ¢] — [s + r(a)1Z}
=h(s' —s5)/(UZ)>. (20)

The following is obtained when Eq. (20) is substituted into
Eq. (15):

27 ’
F(rd) =J ‘J(Z’j ) da, 1)
(¢]
where
q(a,s")
w
(D —7(a)s/D—T1, ,
:fﬁ Wpf(a,s) DIt ] h(s’ — s)ds.
(22)

Equation (21) represents a filtered backprojection algo-
rithm for fan beam projections that have been collected with
a shift in the center-of-rotation.

The following is a summary of the fan beam reconstruc-
tion algorithm:

(1) Multiply each fan beam projection, p(a,s), by
[D—r(a)s/D—1,]/(D>+5°)"2

(2) Convolve each weighted projection with A(s).

(3) For each pixel in the reconstructed image and for each
filtered projection, determine the value of the filtered projec-
tion at s’ given in Eq. (18) and weight this value by U ~2
givenin Eq. (19). Add the weighted filtered projection value
into the reconstructed image.

It should be noted that the adaptation of the analytic re-
construction algorithm to actual machine implementations
can be done only with the introduction of approximations.
The approximations deal with sampling considerations with
regards to the kernel used to filter the weighted projection
data and the conversion of the sampled filtered projections
to continuously filtered projections.'” In practice, the convo-
lution indicated in Eq. (22) is performed using fast Fourier
transform (FFT) operations incorporating the FFT of the
filter, 4 (), and the FFT of the sampled projections, prla,s).
Because of noise and aliasing, the filter is rolled-off using a
suitable window. Convolutional fan beam algorithms cannot
be exactly derived if a window is used. However, because the
window can be exactly incorporated into convolutional par-
allel beam reconstruction algorithms, it was assumed that
the use of a window could also be used with the fan beam
algorithm. The computer simulations that will be shown in
the Sec. I1I verify that the use of a window will not adversely
affect the quality of images. The reconstruction algorithm
givenin Eq. (21) can be combined with the material present-
ed by Parker® to obtain a half-scan reconstruction algorithm
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F1G. 3. Phantom used in the computer simulation studies.

for projections collected with an angular-dependent dis-
placed center-of-rotation.

lli. COMPUTER SIMULATION RESULTS

A computer program was written to generate the x-ray
line-integral data for the phantom shown in Fig. 3. A de-
scription of the ellipses used to construct the phantom can be
found in Table I. A fan beam configuration (see Fig. 2) with
a point source and a point detector was simulated with a
focus-to-center distance D of 630 mm, a focus-to-detector
distance D’ of 1100 mm, and a detector spacing of 0.2 mm.
Data were generated for 1000 projections with 768 samples/
projection.

Figure 4 shows a normal 512 % 512 reconstruction, with a
pixel size of 0.125 mm, of projection data generated without
a shift in the center-of-rotation. The subtle streaks and other
structured artifacts are due to aliasing and an insufficient
number of views.

Line integral projection data were then generated for the
case of an angular-dependent shift in the center-of-rotation.
The shift, 7(@), is given by

7(a) = 3 sin(2a) mm. (23)

The reconstruction of the data, without correcting for the
angular-dependent shift in the center-of-rotation, is shown
in Fig. 5.

The reconstruction of the angular-dependent data, with
correction for the shift, is shown in Fig. 6. The reconstruc-

TABLE I. Description of the ellipses used to construct the phantom shown in
Fig. 3.

Origin Semimajor axes Rotation
Ellipse X Y X Y angle Density
(H Omm Omm 25mm 25mm o 1532 HU
(2) 0 0 23 23 0 — 532
(3) 10 0 3 3 0 266




70 Technical Reports: Crawford, Gullberg, and Tsui: Reconstruction for fan beam 70

F1G. 4. Normal reconstruction of the phantom.

tion algorithm used is given in Egs. (21) and (22). It is clear
that the new reconstruction algorithm corrects for a shift in
the center-of-rotation.

IV. ESTIMATION OF FAN BEAM PARAMETERS

In parallel beam systems it is relatively easy to take cali-
brating measurements to determine the shift in the center-of-
rotation. This is done by using a point source and taking
complementary views 180° apart. The projection of the cen-
ter-of-rotation onto the image plane is determined by sum-
ming the centroids of the projected point source and dividing
by two. A small source of radioactivity is used in SPECT as
the point source and a pin of highly attenuating material is
used in x-ray CT.

In this section we show a method for measuring the pa-

F1G. 5. Reconstruction without compensation for an angular-dependent
shift.
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F1G. 6. Reconstruction with compensation for an angular-dependent shift.

rameters of the fan beam geometry shown in Fig. 7. The
parameters are the angular-dependent displaced center-of-
rotation 7 (), the focus-to-center distance D, and the focus-
to-detector distance D '. Mathematically we use

Sxy) =6(x —x)6(y — py), (24)

for a point source located at (x,,y,) to develop a relation-
ship between the parameters of the fan beam geometry
shown in Fig. 7 and something we can measure, namely, the
centroids of the projected point source.

The fan beam projection operator'® for the geometry in
Fig. 7is
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F1G. 7. The estimated parameters for the fan beam geometry.
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R(a,8) =fw fw f(x,y)(s((g—c)(xsina—ycosa+D) ——xcosa—ysina+r(a))dxdy. (25)

Dl

The projections of the point source are obtained by substitut-
ing Eq. (24) into Eq. (25):

R(a,&) =6[(£ —c)(xysina —yycosa+ D)/D’
—Xy,cosa — posina + 7(a)]. (26)

For the angle @, the centroid of a projection is p(a) defined
by

p(a)sz R(@,£)E de fw R(@,£)dE. 27)

Substituting Eq. (26) into Eq. (27) and integrating we ob-
tain

D'[xycos a4 yysina — 7(a)]

pla) = +c. (28)

(xosina — y,cos a + D)
Here, 7(a) can be written in terms of its Fourier series:

(@) =B, + i By sin(ka) + 5, cos(ka). (29)

k=1
Assume that 7(a) can be approximated by the DC term plus
thefirst N terms of the Fourier series expansion, where Nis a
small number.

The result in Eq. (28) gives an expression for the project-
ed centroid of a point source in terms of the fan beam param-
eters. This suggests a method to estimate the geometry of a
fan beam system. In practice a point source is placed in the
field of view of the scanner. Projections of the point source
are collected and the centroid p; is calculated for each angle
a; using Eq. (27). The parameters of the fan beam geometry
can be estimated by minimizing the chi-square function:

Y (X020 DD Bose . BrsNise - oNn)

:Z (6 —pla)]?, (30)

where p(a, ) is given in Eq. (28). The process of minimizing
Eq. (30) to determine estimates of the fan beam geometry is
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a nonlinear estimation problem which can be solved using
the Marquardt algorithm.'”'®

V. CONCLUSIONS

A method has been shown for determining and correcting
for angular-dependent shifts in the center-of-rotation of a
fan beam computed tomographic system. The projection
data are preprocessed by multiplying by weighting factors
which incorporate the displacement of the center-of-rota-
tion. The modified projections are filtered and then backpro-
jected correctly into a coordinate system whose center-of-
rotation is displaced from the midline of the fan beam.
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