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Reprojection is the process by which projections are produced from an image, such that if these
projections are filtered and backprojected, they yield the original image. In computed
tomography, applications of reprojection include its use in algorithms for iterative beam
hardening correction, metal artifact removal, and streak suppression. However, because of the
computational expense of reprojection, algorithms that employ this process have never been
widely used. A method will be presented that enables an unmodified backprojector to be used as a
reprojector. Because backprojectors are designed to exploit the parallelism in the backprojection
algorithm, the time required to obtain reprojections is significantly reduced.

I. INTRODUCTION

In a standard computed tomographic (CT) scanner, the
outputs of suitable detectors are processed to produce esti-
mates of line integrals through a two-dimensional function
representing a characteristic of the object under examina-
tion. The line integrals for a given rotational position of the
gantry are called the projection of the object. In a typical
system, projections are collected for a large number of rota-
tional positions.

Generally, an image is reconstructed by filtering the pro-
jections with a one-dimensional function and then backpro-
jecting these filtered projections along the projection paths.
The result of this backprojection operation is an image that
closely represents the object function.

Consider a new situation in which one begins with an im-
age and produces projections, such that if these projections
were filtered and backprojected, they yield the original im-
age. This process is called reprojection. With this definition,
projection represents the interactions of a form of radiation
with an object while reprojection is a mathematical process.

In x-ray CT, the best known application of reprojection is
its use in iterative beam hardening correction algorithms.'
However, other uses of reprojection can be found in streak
suppression algorithms? and algorithms that are used to re-
move artifacts caused by the presence of metal clips in CT
images.>

The readily available reprojection algorithms are very
computationally expensive. This computational expense has
been one of the major reasons why algorithms that utilize
reprojection have never been widely used. Thus there exists
the need for faster reprojection methods so that algorithms
based on reprojection can be implemented in conventional
systems and execute in times that satisfy the clinical need.

The slowness of reprojection systems and an attempted
solution are highlighted in the paper by Peters* in which a
method is shown that uses a modified backprojector to ob-
tain reprojections. The modifications reverse the normal
data flow so that reprojections are generated at the normal
input of the unit. The problem with this approach is that the
modifications radically change the hardware of a typical
backprojector, and thus the system is not readily applicable
to existing devices. In addition, the resulting reprojections
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are of poor quality and require complex corrections in order
to be useful.

Another approach used to reduce the processing time in
systems that utilize reprojection is to reproject data along
parallel paths even though the image to be reprojected was
reconstructed using fan beam projections or to reproject at
fewer paths than the original data set.” However, even with
these simplifications, reprojection is still a computationally
expensive process.

A review will first be presented of the mathematics of par-
allel backprojection along with a description of an efficient
implementation of the algorithm. A discussion of the math-
ematics of reprojection will then be presented. Then a meth-
od will be presented that enables an unmodified backprojec-
tor to be used as a reprojector. Because normal data paths of
the backprojector are used and because backprojectors are
already present in most, if not all CT scanners, the time re-
quired to obtain reprojections is significantly reduced. Final-
ly, a discussion of the new system and conclusions will be
stated.

Il. PARALLEL BACKPROJECTION

Let f (x, y) be a function of an object to be reconstructed
from its parallel projections. Consider the fs-coordinate sys-
tem obtained when the xy-coordinate system is rotated by 6.
The two coordinate systems are related as follows:

t=xcosf +ysin§, (1)
s=ycos @ — xsin 6. (2)

Let £ *(1,5) be the object function in the s system. A parallel
projection of f (x, y) in the 8 direction, p(6,t), is given by

p6,n) =J.w S*(5)ds. (3)
S(6,0), the F:):rier transform of p(6,t), is given by

S6,w) = Jw p(B,t)e 2™ dr. (4)
Define the ﬁlte:'ewd projection, g(6,t), as follows:

q(6,1) =fw S(0,0)K(w)e”™" do, (5)
where K(w) ;sozhe reconstruction kernel given by the pro-
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duct of |w| and G(w). G(w) is typically a low-pass filter used
to tailor the resolution and noise characteristics of the recon-
structed image.® It can be shown’ that the original function,
S (x,y), can be reconstructed using the following integral
equation:

fxp) =J.ﬂq(0,x cos & + y sin 8)d6. (6)
0

In reality, only a finite number of projections are collected
and each projection is sampled at a finite number of points.
The sampled projection, P(/,i), can be related to the contin-
uous projection by

P(Li)y =p(lA,, iA), N
where

1=0,1,.,NVIEW - 1, (8)

i= — NDET/2 + 1,...,0,...,NDET/2, 9

A, = 7/NVIEW, (10)

A, = FOV/NDET. (11)

NVIEW is the number of projections (or views), NDET is
the number of samples (or detectors) per projection, and
FOY is the diameter of the field-of-view in which the object
is contained. Let Q(/,/) be a sampled version of ¢(8,t) ob-
tained by convolving P(/,{) with a sampled version of the
inverse Fourier transform of K (w). Then the reconstruction
integral given in Eq. (6) can then be approximated by®

NVIEW — |

z Q(l,x cos 8 + ysin 6). (12)

I=0

S, y)~A,

In Eq. (12), values of Q will be required at locations where
the function is not sampled. Generally, it is assumed that
these values are obtained by linearly interpolating neighbor-
ing samples.

Using Eq. (12), it is possible to reconstruct f (x, y) at any
value of (x, y). In practice, many values of £ (x, y), say an
N XN array, are required. Let F(m,n) be the sampled ver-
sion of the continuous image function such that

F(m,n) = f(mA;,nhp), (13)
where

mn= —N/2+1,.,0,.,N/2, (14)

A, = FOV/N. (15)

Then, in practice, a simple reconstruction algorithm based
on Eq. (12) could be invoked N? times to reconstruct
F(m,n). One limitation with this algorithm is that it cannot
be invoked until all of the projections are collected. Thus a
pipeline architecture is precluded. Also, it is computational-
ly expensive to have trigonometric operations in the inner-
most loop of the algorithm.

Let #(x, y) be the value of ¢ for a given value of (x, y).
From Eq. (1) it can be seen that

t(x + A p) =1t(x,p) + Ay cos 6, (16)
Hx,y+A,) =t(x,y) + A sin 6. (17)

Using Egs. (12), (16), and (17), an efficient reconstruction
algorithm for an N X N array can be developed as shown in
Fig. 1. [Note that the routine reconstructs f (x, y)/A, in-
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Zero all locations of F{(m,n)
DO £=0,NVIEW-1
0 = & Ae
Ax Ag cos®
Ay = Af sin®
t0 -fN/Z - 1) 4x - (N/2 - 1) Ay
DO m=-N/2+1,N/2
= t0
n=-N/2+1 ,N/2
F(m,n) = F(m,n) + INTERP(Q,t)
t =t + Ax
END DO

t0 = t0 + Ay
END DO

END DO

g nn

8"

F1G. 1. An efficient algorithm for the reconstruction of an image of size
N XN.

stead of f (x, y) and the subroutine INTERP linearly inter-
polates a value of Q(/,i) at ¢t.]

The algorithm of Fig. 1 forms the basis of typical hard-
ware implementations of backprojection in which the under-
lined code is usually implemented in hardware. The rest of
the steps are performed in a flexible coprocessor. The role of
the coprocessor is to supply the backprojector with the fil-
tered projection data, the size of the image, ,, A, cos 6, and
A, sin 6.

HIl. MATHEMATICS OF REPROJECTION

Let f(x,y) be the reconstruction of the cross section of
an object. The parallel reprojection of the reconstruction in
the @ direction, r(6,t), is given by

r(o,t) =J_w fw f(x,¥)0(t —xcos 6 — ysin 8)dx dy.
T (18)

A sample of r(6,t) represents the line integral of f (x,y)
along the path givenin Eq. (1). As presented in the previous
section, a discrete version of f(x, y), F(m,n), is typically
reconstucted. An approximate value of the reprojection can
be found by substituting Eq. (13) into Eq. (18) and replac-
ing the integrals with summations:
T N2 N/2
r(Gt)~ w(imn;6,t)F(m,n), (19)
m= —N/24+1n= —N/2+1

where the function w(m,n;0,t) is the distance through a
pixel located at (m,n) for the line given by the parametric
relationship (6,¢). Figure 2 shows an example in which the
values of w(m,n;0,t) can be discerned.

For now, consider only integration paths (6,t) which sa-
tisfy the following:

Isin @] < 1/v2. (20)

Further, consider the intersection of the path (8,¢) with the
mth row in the image and assume that the ray intersects this
row between pixels (m,n) and (m,n + 1) as shown in Fig. 3.
Givenm, 6, and ¢, the value of n can be determined by solving
for x in Eq. (1) and then using Eq. (13):

n=INT'), (21)
where
n' = (t—mAl,sin 0)/(A;cos 8), (22)
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FIG. 2. An example in which the weights, w(m,n;6,t), of Eq. (19) can be
discerned.

and INT (x) is the greatest integer less than or equal to x.
Because of Eq. (20), only w(m,n;6,t) and w(m,n + 1;6,t)
can be nonzero. Thus, the contribution of the mth row to the
reprojection, r(6,t;m), is given by the weighted sum of the
pixel between which the ray crosses:

r(6,tm)~w(m,n;8,t) F(m,n)
+ w(mn + 1,0,0)F(m,n + 1). (23)

Joseph® showed that a better approximation to Eq. (18) is
obtained if the weights in Eq. (23) are those that reduce to
linear interpolation between the pixel values instead of the
geometric path lengths depicted in Fig. 2. With linear inter-
polation, the values of the weight functions reduce to the
following:

w(m,n6,t) = Ay (n' + 1 —n)/|cos 8|, (24)
w(m,n + 1,6,t) = A, (n' —n)/|cos 8. (25)

Figure 4 shows an algorithm, using Egs. (23), (24), and
(25), to calculate, within a scale factor, a single ray of a
reprojection. In the figure, the notation F,, corresponds to
the mth row of F(m,n).

For a reprojection system to be of use, all the rays com-

\/—‘t=xcose+ysin6

f(m,n-1) F(m,n)

Fim.n+1) Fimn+2)

N
\

FI1G. 3. Intersection of a ray of a reprojection with the mth row of an image.
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r(e,t) =0
DO m=-N/2+1,N/2
n' = (t - m A¢ sin@) / (A¢ cose)
R(6,i) = R(8,1) + INTERP(Fp(n),n’)
END DO

FiG. 4. An algorithm for reprojection along a single ray.

prising a reprojection are needed. Assume that the reprojec-
tions have to be calculated along the original projection
paths as defined in Eq. (7). Then the discrete samples of the
reprojection are given by

R(0,i)) =r[6,t(D)], (26)
where i is defined in Eq. (9) and
1) =iA,. 27

Again, one could simply invoke the algorithm of Fig. 4 once
for each of the samples in the reprojection. However, this
procedure does not exploit the common intermediate calcu-
lations in the steps by which several reprojection samples are
computed.

Let n' (/) be the value of #’ for a particular value of £(7). It
can be seen from Eqs. (22) and (27) that »’ (i) and the value
of n’ for the next ray, n’'(i + 1), are related as follows:

n(i+1)=n{)+ Al (28)
where
Al =A,/(A;cos ). (29)

Using Eq. (28) the algorithm shown in Fig. 4 can be ex-
tended to reproject efficiently multiple samples in a reprojec-
tion as shown in Fig. 5. Note that algorithm was extended
with an extra redundant loop.

If the underlined lines of this algorithm are compared to
the parallel backprojection algorithm shown in Fig. 1, the
similarities are striking. Notice that in backprojection, fil-
tered projections and the image are analogous to rows of an
image and the computed reprojection, respectively. Thus,
reprojection can be implemented by “backprojecting” the N
rows of the image as ““filtered projections,” each containing
N samples, resulting in a reconstructed “image” of size
NDET by 1. The image is the reprojection. The coprocessor
of the backprojector can be used to generate A; and n,, thus
allowing the backprojector to generate reprojections.

The algorithm shown in Fig. 5 was derived with the as-
sumption presented in Eq. (20). This assumption was need-

Zero the samples of the reprojection
DO m=-N/2+1,N/2
At' = At / (Ag cos®)
ng= -(NDET/2 - 1) At' - m tane
D8 j=1,1
n' = ng
DO 1=-NDET/2+1,NDET/2
R(8,1) = R(8,1) + INTERP(Fp(n),n')
n'= n' + At'
END DO
END DO
END DO

FIG. 5. An efficient reprojection algorithm for multiple samples with an
extra loop so that it matches the algorithm shown in Fig. 1.
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ed so that a ray crosses, at most, two samples in a row. For
values of @ that do not satisfy Eq. (20), the role of the rows
and the columns in an image have to be switched. In this
latter case, the columns rather than the rows of the image
should be backprojected.

IV. DISCUSSION

The reprojection algorithm using a parallel backprojector
was implemented on an Elscint 2002 CT scanner. It was
found that the backprojector was able to reproject a data set
comparable in size to the original projection data in approxi-
mately the same time required to reconstruct an original
image. The reprojections were used as part of an iterative
beam hardening correction algorithm.

The description of a backprojector in Sec. II applies to a
parallel backprojection unit. However, it can be seen that,
with the proper choice of constants that describe the geome-
try of the fan beam, a fan beam backprojector can also be
used as a parallel backprojector. However, the algorithm
shown in the previous section cannot be extended to allow
fan beam reprojection.

V. CONCLUSIONS

A method that allows an unmodified backprojector to be
used as a reprojector has been shown. The advantage of this
configuration is that it takes advantage of the fact that back-
projectors are already present in most, if not all CT scanners,
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and are designed to exploit the parallelism in the backprojec-
tion algorithm. The time required to obtain reprojections is
sufficiently reduced so that applications requiring reprojec-
tion can be implemented in conventional systems and exe-
cute in times that satisfy the clinical need. The parallel back-
projector on an Elscint 2002 CT scanner was used to obtain
reprojections in a time comparable to that required for the
original backprojection.
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