Aliasing artifacts in computerized tomography

C. R. Crawford and A. C. Kak

Streaking artifacts in tomographic images reconstructed by the filtered-backprojection algorithm are caused
by aliasing errors in the projection data. To show this a computer simulation study was performed in which -
the transforms of undersampled projections were subtracted from the corresponding transforms when the
projection data were taken with a very large number of rays. This yielded the aliased spectrum for the yn:

dersampled case.

An image was reconstructed from the difference transforms.

Streaks present in this =

image exactly matched those present in the undersampled reconstruction. (The number of projections uged "
in this study was large enough to preclude any artifacts caused by their insufficient number.) We have de.
rived a theoretical upper bound for the energy contained in these aliasing artifacts. In this paper we have
also briefly touched upon the artifacts caused by other algorithmic aspects of a tomographic system. -

f. Introduction

The mathematics necessary to obtain tomographic
reconstructions from integral projection data using
filtered-backprojection techniques has been known for
many years.! In a computer implementation two un-
realistic conditions must be satisfied to obtain exact
images. One is that an infinite number of projections
is needed, and the second is that the data have to be
sampled at infinitely small invervals. An approximate
image can be formed if only a finite number of projec-
tions, sampled at a finite number of points, are used. It
is this deviation from the theory that this paper will
address. It should be noted that only algorithm de-
pendent artifacts will be considered. Implementation
artifacts, such as beam refraction for the ultrasonic case,
and polychromaticity (beam hardening) and photon
noise for the x-ray case will not be discussed because,
loosely speaking, they are independent of the algorithm
artifacts. For a recent discussion of many of the im-
plementation artifacts the reader is referred to Ref. 2.

li. Conventional Approximations

In this section the often used approximations needed
to implement the filtered-backprojection algorithm in
a discrete environment will be described. Our discus-
sion here will focus on reconstructions from the parallel
projection data.
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Consider a 2-D function g(x,y). A parallel projection
at angle 0 is given by .

PW) = fm fm 2(x,y)8(x cosh + y sinf — t)dxdy. (1]

If the projections are known for all § between zero and -
w, the function can be exactly reconstructed by
backprojecting filtered versions of the projections. The
filtered projections are given by

QU= [~ SONIf expliznfordr @)

where S(0,f) is the Fourier transform of P(0,t) given
by

S = f_ " P(0,t) exp(—j2nft)dt. 3)

The operation of backprojection for reconstructing
g(x,y) is described by

gley) = j; " Q(0.x cosf + y sinf)d. @

Equation (4) presupposes that an infinite number of
projections from O to 7 are known. Equations (2) and
(3) imply that the projections are known at an infinitely
small sampling interval. To reduce the amount of in-
formation the following assumptions are made.

Instead of trying to obtain the tomogram for the en-
tire plane only a circle of radius T is reconstructed.
Distortions occur if the image is not zero outside of this
region. Most applications have the object to be scanned
immersed in air or water. The projection data are
normalized to zero for ray paths that include only the
air or water. This simplification will cause no problems
unless the projections are not properly normalized.?

Since the image is zero outside the circle the projec-
tions, P(f,t), are also zero for |¢] > T. To obtain the




exact image an infinite number of sampleg are needed
over the interval |t| < T. If the projections are ap-

roximately bandlimited, S(6,f) =~ 0 for | f | > B, then
ipfmore than 4BT samples are used prgctlgally all the
Significant information abput the projections can be
reCovered using the sampling theorem. Let N be the
pumber of samples. The samples, P,(,i), can be re-
ated to the original projection as follows:

2T
Ps(ﬁ,i)=P(0,_T+%+iT); 1=0,1,..,N-1; T=E‘

(5)
To obtain the sample locations we first divide the in-
terval 2T into N parts each of width 7. The samples are
Jocated at the midpoints of these intervals.

If the projections are assumed to be of finite band-
width B and finite order (which means that the entire
pandlimited signal may be represented by a finite
number of samples taken at the Nyquist rate), the
samples Qs (0,1) of the filtered projections, Q(6,t), can
be obtained from the sampled projections by replacing
the Fourier integrals in Egs. (2) and (3) by discrete
Fourier transforms. This procedure is outlined in Ref.
3, and the result is

Qi) =+ "5 .0k [k 22
S yl = S > —
N r==N/2 - N

ik
.2 - ’ 6
exp (] 7TN) (6)

where S;(0,k) is the discrete Fourier transform of

Py(0,0):

N-1 o
Ss(0,k) = 3 Ps(0,i) exp (-—j—ik) . (7)

i=0 N
Note that Eq. (6) implies a circular convolution between
the sampled projection data and the inverse discrete
Fourier transform of the sequence |k[(2B)/N]| for k =
-(N/2),...,0,...,(N/2) — 1 (assuming N is an even
number). Equations (6) and (7) can be evaluated using
fast Fourier transforms (FFT). Crawford and Kak*
have shown that because of aliasing of the filter in the
space domain, Egs. (6) and (7) will cause a dc shift and
dishing similar to beam hardening in the final recon-
struction.

An alternative implementation is obtained by only
invoking the assumption of finite bandwidth. Now
since the projections are bandlimited, it does not matter
what the filter in Eq. (2) is for |f] > B. Letting it be
zero

(8)

L

=0, elsewhere

This corresponds to the following impulse response in
the spatial domain:

9)

ht) = B sin2w Bt _ (simrBt)2 )

it wt

If everything is sampled at the Nyquist rate, 7 = 1/(2B),
one can show using Eq. (2) that the samples of the fil-
tered projections are given by

Qi) =7 3 PuBi—Dhs()

I=—c

N-1
=7 X Pibi—-Dh)

I=—(N-1)

i=01,..,N-1, (10)

where the second equality follows from the fact that
each sampled projection P; is zero outside the range
(O,N — 1) for its index. The sampled function h,(l) is
obtained by substituting ¢t = I7 in Eq. (9):

hg(l) = B2, =0
=0, | even (11
__4B?
== o2’ L odd

Equation (10) implies that in order to know Q,(6,t)
exactly at the sampling points the length of the se-
quence h(l) used should be from | = —(N — 1) tol = (N
—1). Itisimportant to realize that the results obtained
by using Eq. (10) are not identical to those obtained by
using Eq. (7). This is because the discrete Fourier
transform of the sequence h;(l) with [ taking values in
a finite range [such as when [ ranges from —(N — 1) to
(N — 1)] is not the sequence |k[(2B)/N]|. While the
latter sequence is zero at k = 0, the DFT of h,(l) with
[ ranging from —(N — 1) to (N — 1) is nonzero at this
point.

The discrete convolution in Eq. (10) may be imple-
mented directly on a general purpose computer.
However, it is much faster to implement it in the fre-
quency domain using FFT algorithms. [By using spe-
cially designed hardware, direct implementation of Eq.
(10) can be made as fast or faster than the frequency
domain implementation.] For the frequency domain
implementation one has to keep in mind the fact that
one can now only perform periodic (or circular) convo-
lutions. The convolution required in Eq. (10) is ape-
riodic. To eliminate the interperiod interference arti-
facts inherent to periodic convolution we pad the pro-
jection data with a sufficient number of zeros. It can
easily be shown® that if we pad P, (i) with zeroes so that
it is (2N — 1) elements long, we avoid interperiod in-
terference over the N samples of Q,. Of course, if one
wants to use the base 2 FFT algorithm, which is most
often the case, the sequences P; and h; have to be
zero-padded so that each is (2N — 1)3 elements long,
where (2N — 1), is the smallest integer that is a power
of 2 and that is greater than 2N — 1. Therefore, the
frequency domain implementation may be expressed
as

Qo(n7) = 7 X IFFT{FFT{Py(n7) with ZP}
X {FFTh(nr) with ZP}}, (12)

where FFT and IFFT denote, respectively, fast Fourier
transform and inverse fast Fourier transform; ZP stands
for zero padding. One usually obtains superior recon-
structions when some smoothing is also incorporated
in Egs. (10) or (12). For example, in Eq. (12) smoothing

-may be implemented by multiplying the product of the

two FFTs by a Hamming window.

The unsampled filtered projection, @(0,t), can be
recovered exactly by low-pass filtering. In practice this
is too computationally expensive, and linear interpo-
lation is used. The relation is
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Sixteen reconstructions of an ellipse for various values of K and N. The reconstructions were windowed for the purpose of display to

bring out the aliasing streaks and moiré artifacts.

Q0,t) = (= [aDQs(8,[a]) + (1 — a + [a])Qs(6,[a] + 1)
t+ T —(7/2)
="

T

(13)

where @’ is a linearly interpolated approximation to @,
and [«] is the greatest integer less than or equal to «.
The next simplification is the replacement of the
integral in Eq. (4) with a summation. This is needed
because in any real system there can only be a finite
number of projections. If there are K equally spaced
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projections, using Eqgs. (4) and (13) we get for the re-
constructed image g’(x,y)

T K-1
g (x,y) = X = Q' (0;,x cosb; + y sinf;)
=0 , (14)
0 =i
K

This approximation works well when the number of
projections is large, which is usually the case in most
tomographic imaging systems. If one has only a limited




pumber of projections there may be better approxi-
mations. o

Equation (14) is valid for any point (x,y), but only a
finite number of picture points can be reconstructed in
acomputer implementation. Since the picture is zero
outside of a circle of radius 7" only a square of dimen-
sions 2T by 2T will be considered. This will be sampled
at M2 points. The discrete reconstructed image, de-
noted by &5, is then related to g’(x,y) as follows:

0 b
gs(mn) =g | =T +—=+mb, =T +—+nd
2 2 , (15)

mn=01,... M—-1 ~

where 0 = (2T)/M.

In summary, these approximations have been made:
the projections are spatially limited and bandlimited;
the filtered projections can be recovered using linear
interpolation; a finite number of projections can be used
to make an accurate reconstruction; and the final image
can be represented by a finite number of points.

ll. Effects of the Approximations

Figure 1 shows sixteen windowed reconstructions of
an ellipse with various values of K (number of projec-
tions) and N (number of samples per projection).
Figure 2 is a graphical depiction of the numerical values
on the middle horizontal lines through two of the re-
constructions. The following degradations are evident:
Gibbs phenomenon, streaks, and moiré patterns.
These effects will now be related to the approximations
made in the previous section.

A fundamental problem with these images and in
general any tomographic pictures is that usually the
objects are not bandlimited. When a nonbandlimited
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Fig. 2.

function is sampled or when a bandlimited function is
sampled below its Nyquist rate, the portion of the
spectrum above the Nyquist frequency is folded back
into the lower frequencies. This causes the function to
be bandlimited and also have aliasing errors in it.
Backprojection is a linear process so the final image
can be thought to be made up of two functions. One is
the image made from the bandlimited projections de-
graded by linear interpolation and the finite number of
projections. The second is the image made from the
aliased portion of the spectrum in each projection.
The aliased portion of the reconstruction can be seen
by itself by subtracting the transforms of the sampled
projections from the corresponding theoretical trans-
forms of the original projections. Then if this result is
filtered as before the final reconstructed image will be
that of the folded over spectrum. We performed a
computer simulation study along these lines for an el-
liptical object. In order to present the result of this
study we first show in Fig. 3(a) the reconstruction of an
ellipse for N = 64. (The number of projections was 512
and will remain the same for the discussion here.) We
subtracted the transform of each projection for the N
= 64 case from the corresponding transform for N =
1024 case. The latter was assumed to be the true
transform because the projections are oversampled (at
least in comparison with the N = 64 case). The re-
construction obtained from the difference data is shown
in Fig. 3(b). Figure 3(c) is the bandlimited image ob-
tained by subtracting the aliased spectrum image of Fig.
3(b) from the complete image shown in Fig. 3(a). Fig-
ure 3(c) is the reconstruction that would be obtained
provided the projection data for the N = 64 case were
truly band-limited (i.e., did not suffer from aliasing
errors after sampling). The aliased-spectrum recon-
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This figure is a graphical depiction of the numerical values on the middle horizontal lines in two of the reconstructions in Fig. 1. The

jagged lines are the reconstructed values while the straight lines are the true values: (a) N = 64, K = 512; (b) N = 512, K =512.

1 November 1979 / Vol. 18, No. 21 / APPLIED OPTICS 3707



(¢)

Fig. 3.

(a) Reconstruction of an ellipse with N = 64 and K = 512. (b) Reconstruction from only the aliased frequencies in each projection, :

Note that the streaks exactly match those in (a). (c) Image obtained by subtracting (b) from (a). This is the reconstruction that would be
obtained provided the data for the N = 64 case were truly bandlimited. :

struction in Fig. 3(b) and the absence of streaks in Fig.
3(c) prove our point that when the number of projec-
tions is large, the streaking artifacts are caused by ali-
asing errors in the projection data.

Imaging systems are often characterized by their
point spread functions (PSF). For linear position-
invariant systems such a characterization is generally
considered to be complete. However, for sampled
systems this is not always true. Often the PSF will give
no indication of object-spectra dependent artifacts such
as the aliasing streaks discussed above. For example,
for the K = 512, N = 64 case, the PSF is shown in Fig.
4(b), while the reconstruction of the ellipse for the same
K and N is shown in the upper right-hand corner of Fig.
1. While the PSF looks nice and smooth, the aliasing
streaks are quite evident in the ellipse reconstruction.
[The PSF's in Fig. 4 were generated for a point source
located at the origin. Also, for each projection the
(N/2)th ray passed through the origin.]

The distortions that one can see in the PSF are those
that are totally intrinsic to the algorithm such as would
be caused by an inadequate number of projections, the
effect of interpolation (which like aliasing depends upon
N), and the display grid not being fine enough.

The system will yield perfect images (in the absence
of aliasing) if the PSF has a single value at the origin and
zero everywhere else. Because of the finite bandwidth,
if K is infinite, the PSF will be the inverse Hankel
transform of a disk of radius B. That is, the PSF, de-
noted by h(x,y), will now be given by the function

hixy) = [BJ1(2wBr)]/r, : (16)
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where r = (x2 + y2)1/2, Clearly, the width of the main
lobe is inversely related to the projection bandwidth B. -
This is also illustrated in Fig. 4 where the PSF for the
N = 64 case has a wider main lobe than that for the N
= 512.

Along with the main lobes, other structured noise can
also be seen in some of the PSFs in Fig. 4. Brooks® has
shown that this noise is caused by a finite K. He also
showed that if K is larger than {(1.17)/4] N, the PSFis -
essentially noise free. This is confirmed in Fig. 4. It
was shown by Shepp and Logan? that for a finite K and
infinite N the noise caused by the finite number of
projections will go to infinity.

The effects of interpolation can be combined into the
PSF. Oppenheim® has shown that interpolation can
be seen as convolving the unsampled projection witha
window. Thus by the Fourier slice theorem, the Fourier
transform of the PSF without interpolation is multi-
plied by the Fourier transform of the window rotated
about the origin. The PSFs presented in Fig. 4 already
include the effects of interpolation. Because different
interpolation windows effect the spectrum differently,
they could enhance or suppress the aliasing errors. This
has led some authors? to attribute aliasing streaks to
interpolation errors.

The last degradation in the images is moiré pat-
terns.1?  These can be seen in Fig. 1 where N = 512 and
K = 64. The projection data now have a large band-
width. However, the display grid is not fine enough to
represent these high frequencies and 2-D aliasing takes
place. It is interesting to note that two different types
of aliasing artifacts may occur in computerized tomog-
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Fig. 4. Point spread functions for some of the reconstructions in Fig. 1.
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Fig. 5. (a) A symbolic depiction of the aliasing distortion. S(8,f) is the transform of the true projection at angle . (b) Some of the replication
of S(8,f) are shown here. The sum of these replications is S0.f).
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raphy: those caused by undersampling of the projec-
tion data and those caused by the display grid not being
fine enough.

IV. Upper Bound for Energy in Aliasing Streaks

In this section an upper bound for the energy in the
streaks for an elliptical object will be found assuming
an infinite number of projections. Our interest in el-
liptical objects stems from the mathematical tractability
of this case and, also, because of their frequent use in
computer simulation work in tomography.

Let S(0,f) be the Fourier transform of the samples of
the projection at angle 0. It is related to the true
transform by

T SOf = 2B), a7

j=—w

S@0.n=

where B = Y57, 7 being the sampling interval. Note that
with the sampling interval 7, B is the measurement
bandwidth of the system. Both S(0,f) and S(0,f) are
illustrated in Fig. 5. For most cases of aliasing distor-
tion the measurement bandwidth B is only slightly less
than the projection bandwidth W, which is the case
depicted in the figure. Now let S4(6,f) denote the ali-
ased frequency components within the measurement
bandwidth. It is clear from Fig. 5 that S4(0,f) consists
essentially of contributions made by the two, the first
left and the first right, replications of the baseband
spectrum. Thus we may write

S4(0,f) = S(6,f —2B) + S(0,f + 2B), |f] <B. (18)

Let g4(x,y) denote the reconstruction from only the
aliased frequencies. The total energy in this recon-
struction will be denoted by E4 and may be defined
as

BA= T Jghtldady. (19)

S.W/DW B
2.88000 4
1.80000 4
. 780000

0000.00

x1073 )

=.78000 -

~1.8000

~2.8800

Using the Fourier slice theorem and Parseval’s theOrem
Eq. (19) becomes

EA:J;W J‘—: |SA(0,0)]2]f] dfdb. a

Since we are interested in aliased frequencies within the
measurement band only we may write

™ B
Ba= J, S Isrentinaas o

Now an object consisting of a single ellipse at the or.
igin of major and minor axes given by 2R and 28, re.
spectively, is mathematically described by
2
Yo
R2 S2

=0, elsewhere

glxy) - q

(22)

The projections, P(0,t), of this object are given by
POy =2 @ -2, || <a
a

, (23)
=0, elsewhere

where a2 = R2 cos20 + S2sin20. The Fourier transform
of P(0,t) is given by
s0n =25 Jl(zf’”’f ) 24)
where J1() is the Bessel function of order one.
Near f = B and f = —B the function [J1(x)]/x can be
well approximated by its asymptotic form:

Ji(x) 2 2 - 3w
— cos [|x| —— x> or x-—>—o,
mlx]? 4

X

(25)

.0000 T T T T i syvtm T -
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frequency (f) +

Fig. 6. 'This figure illustrates the fact that beyond the limits of the measurement bandwidth in the frequency domain, the Bessel function
can be well approximated by its asymptotic form. (In this case the measurement band is from f = =16 to f = 16.) The solid curve corresponds
to the exact result obtained by using Eq. (24); and the dashed curve is based on the approximation in Eq. (25).
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Toillustrate the reasonableness of this approximation
consider the case of the ellipse in Fig. 3 whose dimen-
4 = 0.1 since this corresponds to the projection with the
maximum bandwidth. Let us say we have 64 samples
per projection and let the value of T'be 1. Therefore,
. =2/64and B = Y7t =16. Hence the measurement
pand is given by =16 < f <16. The solid curve in Fig.
¢is a plot of S(6,f) as given by Eq. (24) for 16 < f < 32;
and the dashed curve is obtained by using the approx-
imation in (25). Since in our experiments the 64 sam-
ples represent a highly undersampled case, and since the
asymptotic approximation gets better as N is increased,
using (25) is a good approximation for discussing ali-
asing.  Using (24) and (25) we write for s(f — 2B) at
frequencies f < B:

RS

————cos |2 (2B——f)—3—7E}
7-(-[(1(28 _f)]S/QCOS[ Ta 4

S(6,f — 2B) =~
for f<B. (26)

~ Asimilar asymptotic expression can be written for S(f
+ 2B) at frequencies f > —B:

RS
m[a(2B + f)]3/2

3w

S6,f+ 2B) ~ cos [27ra(2B +f) - T

for f>-—B. (27)

We will now assume that the measurement bandwidth
is large enough so that in the baseband spectrum
frequencies above 2B do not contribute to aliasing.
That is, for practical purposes we may write B < W <
2B. [Note that this assumption is consistent with ours
including only two replications in Eq. (18).] Therefore,
we can ignore the energy in S(,f — 2B) and S(0,f + 2B)
at frequencies f < 0 and f > 0, respectively. With this
assumption substitution of (26) and (27) in (18) leads

to
RS

SA@Gf) = — 15
OD = B~ e C‘“[

Substituting Eq. (28) into Eq. (21)

A(RS)? o R f cos? |2ma(2B — f) — §41
EA ~ ——— — df.
w2 j; a3 df J(‘) (2B — f)3 /
(29)
The inner integral can be reduced to
é - % f;B (2Bz=% — 2=2) sin(draz)dz. (30)

The integral in (30) can be bounded in absolute value
by 1/(4B) so the integral in (29) reduces to

(RS)2 (/2
A -3
B j; a=3(0)d6. 31

The integral in (31) can be evaluated using identities
found in Ref. 11.

R
A< — 2
EA <= E[B), (32)

where 8 = (1 — (S/R)?)'/2 and where E|[x] is an elliptic
integral defined as

sonsaregiven by R =0.2and S = 0.1. Now let us select .

2ma(2B - |f]) —S—I— - (28)

Elx] = . (I = x2sin?0)12d . 33
o (33)

The value of the upper bound in (31) [or (32)] lies in its
functional dependence on the parameters of the size of
the ellipse. This upper bound led us to an interesting
conclusion (verified eventually by computer simulation)
that although a larger ellipse is more low-frequency in
character, the enengy in its aliasing streaks should be
greater. The intuitive justification for this is the fact
that as an ellipse gets larger, in its frequency domain
representation its energy increases at all frequencies
including those that contribute to aliasing. The reader
may note that for any give S/R as an ellipse is made
larger, although E4 increases, the normalized streak
energy given by E4/7wRS will decrease. The factor 7RS
is the energy in the ellipse itself. Also (31) [or (32)] lead
to the expected conclusion that the energy in the streaks
is bounded from above by a function that is inversely
related to the bandwidth, which implies that it is in-
versely related to the number of sample points. This
is seen in Fig. 1 in the last column where the streaks die
out as N increases.

V. Conclusions

In computerized tomography based on filtered-
backprojection algorithms, streaks are caused by ali-
asing errors introduced when the projection data are
undersampled. These aliasing streaks are different
from (and, in addition to) the streaks caused by an in-
sufficient number of projections.

This work was partly supported by the NIH grant
GM24994-01
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